DOI QR코드

DOI QR Code

Hindcast of Storm Surge in the Southeastern Coast Using a Three-Dimensional Numerical Model

3차원 수치모형을 이용한 남동해안 폭풍해일 산정

  • 김차겸 (경남도립남해대학 조선토목계열) ;
  • 이종태 (경기대학교 토목환경공학부)
  • Received : 2008.12.02
  • Accepted : 2010.12.07
  • Published : 2011.08.31

Abstract

A three and two dimensional (3D and 2D) numerical models were established to study the storm surge induced by Typoon Maemi in Masan and Pusan Ports. The typhoon landed on the southern coast of Korean Peninsula at 21:00, September 12, 2003 with a central pressure of 950 hPa. The observed maximum storm surge in Masan Port was 230 cm, and the computed peak storm surge using the 3D and the 2D models were 238 cm and 208 cm, respectively. The observed maximum storm surge in Pusan Port was 89 cm, and the peak storm surge of the 3D and the 2D models were 91 cm and 79 cm, respectively. The hindcasted storm surge using 3D model was in good agreement with the observed data, and the 3D model at peak time was more accurate than the 2D. The storm-induced currents were computed using the 3D model. The currents in the surface layer of Masan Bay went into the inner bay with 30~60 cm/sec, while the currents in the bottom layer flowed out with 20~40 cm/sec.

마산항, 부산항 등 남동해안의 폭풍해일을 산정하기 위해 3차원 및 2차원 폭풍해일 모델을 구축하여 2003년 태풍 "매미"에 의한 폭풍해일을 수치계산하였다. 태풍 "매미"는 2003년 9월 12일 21시에 중심기압 950 hPa인 상태로 남해안에 상륙하였다. 마산항에서 태풍 "매미"에 의한 peak 시 폭풍해일의 현장관측치는 230 cm, 3차원 모델에 의한 계산결과는 238 cm, 2차원 모델에 의한 계산치는 208 cm이다. 부산항에서 관측된 폭풍해일은 89 cm, 3차원 모델과 2차원 모델에 의한 계산치는 각각 91 cm, 79 cm이다. 본 연구에 의한 3차원 폭풍해일 모델은 현지 폭풍해일을 거의 정확하게 추산하였다. 3차원 모델이 2차원 모델보다 폭풍해일의 peak 시에 현지 폭풍해일을 보다 정확하게 해석하였다. 또한, 2003년 태풍 "매미" 통과시 폭풍류를 수치계산하였다. 마산만 내에서 태풍으로 발생한 표층 유속은 30~60 cm/sec 크기로 만내로 유입하고, 저층에서는 20~40 cm/sec로 마산만에서 외해로 유출하는 흐름패턴을 보여주고 있다.

Keywords

References

  1. 강시환, 전기천, 김상익, 한성대(2004) 태풍 매미 통과시 남해안 해일 모의 산정, 2004년도 정기학술대회 논문집, 대한토목학회, pp. 989-993.
  2. 강주환, 박선중, 박민원(2008) 서남해안의 해수면 상승과 해일고 증가 영향, 한국해안.해양공학회지, 한국해안.해양공학회, 제20권 제1호, pp. 14-24.
  3. 강주환, 박선중, 문승록, 윤종태(2009) 태풍의 특성변화에 따른 경남해역 해일양상 고찰, 한국해안.해양공학회지, 한국해안.해양공학회, 제21권 제1호, pp. 1-14.
  4. 김차겸, 장선덕, 이종섭(1994) 진해만 조류의 2차원 수리 및 수치 모델링, 한국해양학회지, 한국해양학회, 제29권 제2호, pp.83-94.
  5. 김차겸, 양한섭, 김기철(1999) 3차원 layer.level 혼성 해수유동 모델 개발, 대한토목학회논문집, 대한토목학회, 제19권 제II-5호 , pp. 603-614.
  6. 김차겸, 이종태(2005) 3차원 모델에 의한 남동해안 태풍해일 산정, 2005년도 정기학술대회 논문집, 대한토목학회, pp. 780-783.
  7. 이종섭, 주귀홍, 장선덕(1990) 부산연안 폭풍해일의 변동양상과 수치예측, 한국해안.해양공학회지, 한국해안.해양공학회, 제2권 제2호, pp. 104-111.
  8. 허동수, 염경선, 김지민, 김도삼, 배기성(2006) 경남연안의 지역특 성에 따른 폭풍해일고의 변동, 한국해양공학회지, 한국해양공학회, 제20권 제3호, pp. 45-53.
  9. 허동수, 이현우, 이우동, 배기성(2008) 슈퍼태풍 내습 시 부산. 경남 연안역의 폭풍해일고, 한국해안.해양공학회지, 한국해안.해양공학회, 제20권 제1호, pp. 128-136.
  10. Bretschneider, C.L. and Lo, J.M. (1984) A rankin vortex number as a guide to the selection of a model hurricane, In Proc. 19th ICCE, pp. 147-161.
  11. Choi, B.H., Eum, H.M., Kim, H.S., Jeong, W.M., and Shim, J.S. (2004) Wave-tide-surge coupled simulation for typhoon Maemi, Special Workshop of Waves and Storm Surges around Korean Peninsula, J. Korean Society of Coastal and Ocean Engineers, pp. 121-144.
  12. Holland, G.J. (1980) An analytical model of the wind and pressure profiles in hurricanes, Monthly Weather Review, No. 108, pp. 1212-1218.
  13. Kawai, H., Kawaguchi, K., and Hashimoto, N. (2004) Development of storm surge model coupled with wave model and hindcasting of of storm waves and surges caused by by Typhoon 9918, Proceeding of ISOPE 2004.
  14. Kawai, H., Kim, D.-S., Kang, Y.-K., Tomida, T., and Hiraishi, T. (2005) Hindcasting of storm surges in Korea by Typhoon 0314 (Maemi), Proceeding of ISOPE 2005, pp. 446-453.
  15. Kim, C.-K. and Lee, J.-S (1994) A three-dimensional PC-based hydrodynamic model using an ADI scheme, Coastal Engineering, Vol. 23, pp. 271-287. https://doi.org/10.1016/0378-3839(94)90006-X
  16. Kim, C.-K. and Lee, J.T. (2007) Storm surge hindcast using a threedimensional numerical model, 21th annual conference of PACON 2007.
  17. Lee, J.-C., Jun, K.-C., Park, K.-S., and Kwon, J.-I. (2007) Hindcast of the storm surge, Typoon Maemi, 21th annual conference of PACON 2007.
  18. Oh, I.S. and Kim, S.I. (1990) Numerical simulations of the storm surges in the sea around Korea, J. Oceanographical Society of Korea, Vol. 25, No. 4, pp. 161-181.
  19. Wang, X, Yan, T., and Hu, Q. (2005) An application of numerical simulation and correlation method to calculate storm surge elevations with certain return years, Proceeding of ISOPE 2005, pp. 454-458.
  20. Watanabe, A. and Shibaki, H (2002) Study of multi-level simulation model for storm surge considering density stratification and wave setup, J. Hydraulics, Coastal and Envir. Eng., JSCE, No. 719/-61, pp. 47-66.
  21. Westerink, J.J, Luettich, R.A., Baptista, A.M, Scheffner, N.W., and Farrar, P. (1992) Tide and storm surge predictions using finite element model, J. Hydraulic Engineering, Vol. 118, No. 10, pp. 1373-1390. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:10(1373)
  22. Yeh, S.-P., Lee, B.C., Doong, D.-J., Kuo, C.-L., and Kao, C.C (2005) The coastal hazards warning system based on the operational wave and storm surge models, Proceeding of ISOPE 2005, pp. 440-445.