참고문헌
- A. Othonos and K. Kalli, Fiber Bragg Gratings Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, USA, 1999).
- Y. J. Rao, "Recent progress in applications of in-fiber Bragg grating sensors," Opt. Laser Eng. 31, 297-324 (1999). https://doi.org/10.1016/S0143-8166(99)00025-1
- M.-H. Song, "A wideband interferometric wavelength shift demodulator of fiber Bragg grating strain sensor," J. Opt. Soc. Korea 3, 64-68 (1999). https://doi.org/10.3807/JOSK.1999.3.2.064
- S.-M. Lee and J.-S. Sirkis, "Hydrogen sensor based on palladiumattached fiber Bragg grating," J. Opt. Soc. Korea 3, 69-73 (1999). https://doi.org/10.3807/JOSK.1999.3.2.069
- X. Shu, K. Chisholm, I. Felmeri, K. Sugden, A. Gillooly, L. Zhang, and I. Bennion, "Highly sensitive transverse load sensing with reversible sampled fiber Bragg gratings," Appl. Phys. Lett. 83, 3003-3005 (2003). https://doi.org/10.1063/1.1618367
- G. Chen, L. Liu, J. Jia, J. Yu, L. Xu, and W. Wang, "Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber," IEEE Photon. Technol. Lett. 16, 221-223 (2004). https://doi.org/10.1109/LPT.2003.820117
- S. Gupta, T. Mizunami, T. Yamao, and T. Shimomura, "Fiber Bragg grating cryogenic temperature sensors," Appl. Opt. 35, 5202-5205 (1996). https://doi.org/10.1364/AO.35.005202
- C. Lupi, F. Felli, L. Ippoliti, M. A. Caponero, M. Ciotti, V. Nardelli, and A. Paolozzi, "Metal coating for enhancing the sensitivity of fibre Bragg grating sensors at cryogenic temperature," Smart Mater. Struct. 14, N71-N76 (2005). https://doi.org/10.1088/0964-1726/14/6/N02
- J. Jung, H. Nam B. Lee, J. O. Byun, and N. S. Kim, "Fiber Bragg grating temperature sensor with controllable sensitivity," Appl. Opt. 38, 2752-2754 (1999). https://doi.org/10.1364/AO.38.002752
- G.-C. Lin, L. Wang, C. C. Yang, M. C. Shin, and T. J. Chuang, "Thermal performance of metal-clad fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 10, 406-408 (1998). https://doi.org/10.1109/68.661425
- J. Long, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, "An embedded FBG sensor for simultaneous measurement of stress and temperature," IEEE Photon. Technol. Lett. 18, 154-156 (2006). https://doi.org/10.1109/LPT.2005.860046
- P. Lu, L. Men, and Q. Chen, "Resolving cross sensitivity of fiber Bragg gratings with different polymeric coatings," Appl. Phys. Lett. 92, 171112 (2008).
- D. R. Lide, CRC Handbook of Physics and Chemistry (CRC Press, Boca Raton, FL, USA, 2003).
- Dow Corning Data Sheet, "www2.dowcorning.com/DataFiles/090007c88020b9a3.pdf".
- C.-s. Park, Y. Han, K.-I. Joo, Y. W. Lee, S.-W. Kang, and H.-R. Kim, "Optical detection of volatile organic compounds using selective tensile effects of a polymer-coated fiber Bragg grating," Opt. Express 18, 24753-24761 (2010). https://doi.org/10.1364/OE.18.024753
- D. H. Young, R. A. Freedman, T. R. Sandin, and A. L. Ford, University Physics (Addison-Wesley, San Francisco, USA, 1992).
- G. Meltz and W. W. Morey, "Bragg grating formation and germanosilicate fiber photosensitivity," Proc. SPIE 1516, 185-199 (1991). https://doi.org/10.1117/12.51164
- S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopahyay, "Studies on surface wettability of Poly(Dimethyl)Siloxane (PDMS) and glass under Oxygen-plasma treatment and correlation with bond strength," J. Microelectromech. Syst. 14, 590-597 (2005). https://doi.org/10.1109/JMEMS.2005.844746
- F. P. Mallinder and B. A. Proctor, "Elastic constants of fused silica as a function of large tensile strain," Phys. Chem. Glasses 2, 91-103 (1964).
- D. Armani, C. Liu, and N. Aluru, "Re-configurable fluid circuits by PDMS elastomer micromachining," in Proc. IEEE Micro Electro Mechanical Systems (Orlando, FL, USA, 1999), pp. 91-103.
- J. Mark, K. Ngai, W. Graessley, L. Mandelkern, E. Samulski, J. Koenig, and G. Wignall, Physical Properties of Polymers (Cambridge University Press, Cambridge, UK, 2004).
피인용 문헌
- Sensitivity-enhanced single-mode fiber-tapered hollow core fiber-single-mode fiber Mach–Zehnder interferometer for refractive index measurements vol.46, pp.1, 2018, https://doi.org/10.1080/10739149.2017.1334663
- Compact and Temperature Independent Electro-optic Switch Based on Slotted Silicon Photonic Crystal Directional Coupler vol.16, pp.3, 2012, https://doi.org/10.3807/JOSK.2012.16.3.282
- Ultrasensitive Temperature Sensor Based on Refractive Index Liquid-Sealed Thin-Core Fiber Modal Interferometers vol.14, pp.4, 2014, https://doi.org/10.1109/JSEN.2013.2294012
- Thermo-optic Characteristics of Micro-structured Optical Fiber Infiltrated with Mixture Liquids vol.17, pp.3, 2013, https://doi.org/10.3807/JOSK.2013.17.3.231
- Fiber Bragg grating based sensing system: Early corrosion detection for structural health monitoring vol.246, 2016, https://doi.org/10.1016/j.sna.2016.04.028
- A Highly Sensitive Temperature Sensor Based on a Liquid-Sealed S-Tapered Fiber vol.25, pp.9, 2013, https://doi.org/10.1109/LPT.2013.2252336
- Long distance fiber Bragg grating strain sensor interrogation using a high speed Raman-based Fourier domain mode-locked fiber laser with recycled residual Raman pump vol.21, pp.11, 2013, https://doi.org/10.1364/OE.21.013402
- Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating vol.377, 2016, https://doi.org/10.1016/j.optcom.2016.05.039
- Metal-coated fiber Bragg grating for dynamic temperature sensor vol.127, pp.22, 2016, https://doi.org/10.1016/j.ijleo.2016.08.110
- Non-destructive fiber Bragg grating based sensing system: Early corrosion detection for structural health monitoring vol.268, 2017, https://doi.org/10.1016/j.sna.2017.10.048
- Microfiber Bragg Grating Sandwiched Between Standard Optical Fibers for Enhanced Temperature Sensing vol.28, pp.6, 2016, https://doi.org/10.1109/LPT.2015.2504564
- Improvement in temperature sensitivity of FBG by coating of different materials vol.127, pp.2, 2016, https://doi.org/10.1016/j.ijleo.2015.10.014
- Elastomeric 2D grating and hemispherical optofluidic chamber for multifunctional fluidic sensing vol.30, pp.12, 2013, https://doi.org/10.1364/JOSAA.30.002466
- Effects of thermal loading and hydrostatic pressure on reflecting wavelengths of double-coated fiber Bragg grating with different coating-layer thickness vol.123, pp.10, 2017, https://doi.org/10.1007/s00340-017-6829-1
- Field analysis based on the smoothly deformed Bragg fiber vol.125, pp.14, 2014, https://doi.org/10.1016/j.ijleo.2014.01.079
- Measurement Range Enlargement in Brillouin Optical Correlation Domain Analysis Using Multiple Correlation Peaks vol.16, pp.3, 2012, https://doi.org/10.3807/JOSK.2012.16.3.210
- Application of a Packaged Fiber Bragg Grating Sensor to Outdoor Optical Fiber Cabinets for Environmental Monitoring vol.15, pp.2, 2015, https://doi.org/10.1109/JSEN.2014.2353040
- PDMS-Coated S-Tapered Fiber for Highly Sensitive Measurements of Transverse Load and Temperature vol.15, pp.6, 2015, https://doi.org/10.1109/JSEN.2015.2388490
- Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film vol.26, pp.2, 2018, https://doi.org/10.1364/OE.26.001910
- Cascade-able optical fiber delay-based temperature sensor system vol.54, pp.2, 2015, https://doi.org/10.1117/1.OE.54.2.026105
- Compact Biocompatible Fiber Optic Temperature Microprobe Using DNA-Based Biopolymer vol.36, pp.4, 2018, https://doi.org/10.1109/JLT.2017.2780266
- Enhancing Temperature Sensitivity Using Cyclic Polybutylene Terephthalate- (c-PBT-) Coated Fiber Bragg Grating vol.2018, pp.1687-7268, 2018, https://doi.org/10.1155/2018/3790326
- Ionic Conductive Polyurethane-Graphene Nanocomposite for Performance Enhancement of Optical Fiber Bragg Grating Temperature Sensor vol.6, pp.2169-3536, 2018, https://doi.org/10.1109/ACCESS.2018.2867220
- High performance all-fiber temperature sensor based on coreless side-polished fiber wrapped with polydimethylsiloxane vol.26, pp.8, 2018, https://doi.org/10.1364/OE.26.009686