References
- Ahn, S.S. Ruzzene, M., 2006. Optimal design of cylindrical shells for enhanced buckling stability:Application to supercavitating underwater vehicles. Finite Elements in Analysis and Design, 42, pp. 967-976. https://doi.org/10.1016/j.finel.2006.01.015
- Bolotin, V.V., 1964. The dynamic stability of elastic systems. USA, Holden-Day, Inc.
- Eberhart, R.C. Kennedy, J., 1995. Particle swarm optimization. In Proceedings IEEE Conference on Neural Networks IV, Piscataway NJ, USA, pp. 1942-1948.
- Flugge, W., 1973. Stresses in Shells. Springer, New York.
- IPSAP, URL : http://ipsap.snu.ac.kr
- Kim, J.H. and Kim, S.J., 1999. A Multifrontal Solver Combined with Graph Partitioners. AIAA Journal, Vol. 38(8), pp. 964-970.
- Kim, S.J. Lee, C.S. Kim, J.H., 2003. The large-scale eigen analysis by using the block Lanczos method and parallel Multifrontal solver. 5th International Congress on Industrial and Applied Mathmatics, Sydney, Australia.
- Kirschner, I.N. Fine, N.E. Uhlman, J.S. Kring, D.C., 2001. Numerical modeling of suptercavitating flows. RTO AVT Lecture Series on Supercavitating Flows, Von Karman Institute.
- Kirschner, I.N. Kring, D.C. Stokes, A.W. Fine, N.E. and Uhlman, J.S., 2002. Control strategies for supercavitating vehicles. Journal of Vibration and Control, 8, pp. 219-242. https://doi.org/10.1177/107754602023818
- MacNeal, R.H., 1972. NASTRAN Theoretical manual. The MacNeal-Schwendler Corp.
- MacNeal, R.H., 1978. A simple quadrilateral shell element. Computers & Structures, 8, pp. 175-183. https://doi.org/10.1016/0045-7949(78)90020-2
- Marcal, P.V., 1969. Finite element analysis of combined problems of material and geometric behavior. Proc. Am. Soc. Mech. Eng. Conf. on Computational Approaches in Applied Mechanics, pp. 133.
- Marques, O., 2001. BLZPACK User's Guide.
- Martin, H.C., 1966. On the derivation of stiffness matrices for the analysis of large deflection and stability problems. University of Washington, Department of Aeronautics and Astronautics, Roport 66-4.
- Moen, C.D. Schafer, B.W., 2009. Elastic buckling of thin plates with holes in compression or bending. Thin-Walled Structures, Vol.47, pp. 1597-1607. https://doi.org/10.1016/j.tws.2009.05.001
- Rand, R. Pratap, R. Ramani, D. Cipolla, J. and Kirschner, I., 1997. Impact dynamics of a supercavitating underwater projectile. Proceedings of ASME Design Engineering Technical Conferences (DETC), Sacramento CA, USA.
- Ruzzene, M., 2004. Dynamic buckling of periodically stiffened shells: application to supercavitating vechiles. International Journal of Solids and Structures, 41, pp. 1039-1059. https://doi.org/10.1016/j.ijsolstr.2003.10.008
- Ruzzene, M., 2004. Non-axisymmetric buckling of stiffened supercaviting shells: static and dynamic analysis. Computers and Structures, 82, pp. 257-269. https://doi.org/10.1016/j.compstruc.2003.09.003
- Schenk, O., Gartner, K., 2011. PARDISO : User Guide.
- Schutte, J.F. Reinbolt, J.A. Fregly, B.J. Haftka, R.T. and George, A.D., 2004. Parallel global optimization with the particle swarm algorithm. International Journal for Numerical Methods in Engineering, 61(13), pp. 2296-2315. https://doi.org/10.1002/nme.1149
- Vasin, A.D., 2001. Some problems of supersonic cavitation flows. Proceedings of the 4th International Symposium on Cavitation, Pasadena CA, USA.
- Venter, G. and Sobieszczanski-Sobieski, J., 2002. Multidisciplinary optimization of a transport aircraft wing using particle swarm optimization. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta GA, USA.
- Yoon, Y.H., 2011. Asynchronous particle swarm optimization with redistribution technique and its application to optimal design of satellite adapter-ring. Ph. D thesis, Seoul National University.
Cited by
- A multi-objective variable-fidelity optimization method for genetic algorithms vol.46, pp.4, 2014, https://doi.org/10.1080/0305215X.2013.786063