DOI QR코드

DOI QR Code

Influence of Sintering Atmosphere on Abnormal Grain Growth Behaviour in Potassium Sodium Niobate Ceramics Sintered at Low Temperature

  • Fisher, John G. (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Choi, Si-Young (Korea Institute of Materials Science) ;
  • Kang, Suk-Joong L. (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2011.09.24
  • Accepted : 2011.09.30
  • Published : 2011.11.30

Abstract

The present study aims to identify the effect of sintering atmosphere [$O_2$, 75$N_2$-25 $H_2$ (mol%) and $H_2$] on microstructural evolution at the relatively low sintering temperature of 1040$^{\circ}C$. Samples sintered in $O_2$ showed a bimodal microstructure consisting of fine matrix grains and large abnormal grains. Sintering in 75 $N_2$ - 25 $H_2$ (mol %) and $H_2$ caused the extent of abnormal grain growth to increase. These changes in grain growth behaviour are explained by the effect of the change in step free energy with sintering atmosphere on the critical driving force necessary for rapid grain growth. The results show the possibility of fabricating $(K_{0.5}Na_{0.5})NbO_3$ at low temperature with various microstructures via proper control of sintering atmosphere.

Keywords

References

  1. B. Jaffe, W. R. Cook Jr, and H. Jaffe, "Chapter 8: Perovskite Niobates and Tantalates," p. 192-93 in Piezoelectric Ceramics, London: Academic Press; 1971.
  2. E. Ringgaard and T. Wurlitzer, "Lead-Free Piezoceramics Based on Alkali Niobates," J. Eur. Ceram. Soc., 25 2701-6 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.126
  3. R. E. Jaeger and L. Egerton, "Hot Pressing of Potassium-Sodium Niobates," J. Am. Ceram. Soc., 45 [5] 209-13 (1962). https://doi.org/10.1111/j.1151-2916.1962.tb11127.x
  4. Y. Guo, K. Kakimoto, and H. Ohsato, "$(Na_{0.5}K_{0.5})NbO_{3}$-$LiTaO_{3}$ Lead-Free Piezoelectric Ceramics," Mater Lett., 59 241-44 (2005). https://doi.org/10.1016/j.matlet.2004.07.057
  5. R. Zuo, X. Fang, and C. Ye, "Phase Transitional Behavior and Piezoelectric Properties of Lead-Free $(Na_{0.5}K_{0.5})NbO_{3}$-$(Bi_{0.5}K_{0.5})TiO_{3}$ Ceramics," J. Am. Ceram. Soc., 90 [8] 2424-28 (2007). https://doi.org/10.1111/j.1551-2916.2007.01767.x
  6. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, "Lead-Free Piezoceramics," Nature, 432 84-7 (2004). https://doi.org/10.1038/nature03028
  7. H. Takao, Y. Saito, Y. Aoki, and K. Horibuchi, "Microstructural Evolution of Crystalline-Oriented $(K_{0.5}Na_{0.5})NbO_{3}$ Piezoelectric Ceramics with a Sintering Aid of CuO," J. Am. Ceram. Soc., 89 [6] 1951-6 (2006). https://doi.org/10.1111/j.1551-2916.2006.01042.x
  8. D. Jenko, A. Ben an, B. Mali , J. Holc, and M. Kosec, "Electron Microscopy Studies of Potassium Sodium Niobate Ceramics," Microsc Microanal, 11 572-80 (2005). https://doi.org/10.1017/S1431927605050683
  9. H. Du, Z. Li, F. Tang, S. Qu, Z. Pei, and W. Zhou, "Preparation and Piezoelectric Properties of $(K_{0.5}Na_{0.5})NbO_{3}$ Lead-Free Piezoelectric Ceramics with Pressure-Less Sintering," Mater. Sci. Eng. B., 131 83-7 (2006). https://doi.org/10.1016/j.mseb.2006.03.039
  10. B. Malic, J. Bernard, A. Bencan, and M. Kosec, "Influence of Zirconia Addition on the Microstructure of $K_{0.5}Na_{0.5}NbO_{3}$ Ceramics," J. Eur. Ceram. Soc., 28 1191-6 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.11.004
  11. Y. Zhen and J. F. Li, "Abnormal Grain Growth and New Core-Shell Structure in $(K,Na)NbO_3$-Based Lead-Free Piezoelectric Ceramics," J. Am. Ceram. Soc., 90 [11] 3496-502 (2007). https://doi.org/10.1111/j.1551-2916.2007.01977.x
  12. Y. M. Chiang, D. Birnie III, and W. D. Kingery, "Chapter 5: Microstructure," p. 351-513, Physical Ceramics: Principles for Ceramic Science and Engineering New York, John Wiley & Sons, 1997.
  13. J. J. Choi, J. Ryu, and H. E. Kim, "Microstructural Evolution of Transparent PLZT Ceramics Sintered in Air and Oxygen Atmospheres," J. Am. Ceram. Soc., 84 [7] 1465-69 (2001).
  14. J. G. Fisher and S. J. L. Kang, "Microstructural Changes in $(K_{0.5}Na_{0.5})NbO_{3}$ Ceramics Sintered in Various Atmospheres," J. Eur. Ceram. Soc., 29 2581-88 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.02.006
  15. J. G. Fisher, D. Rout, K. S. Moon, and S. J. L. Kang, "High-Temperature X-Ray Diffraction and Raman Spectroscopy Study of $(K_{0.5}Na_{0.5})NbO_{3}$ Ceramics Sintered in Oxidizing and Reducing Atmospheres," Mater. Chem. Phy., 120 [2-3] 263-71 (2010). https://doi.org/10.1016/j.matchemphys.2009.11.001
  16. J. G. Fisher, D. Rout, K. S. Moon, and S. J. L. Kang, "Structural Changes in Potassium Sodium Niobate Ceramics Sintered in Different Atmospheres," J. Alloys. Compounds., 479 467-72 (2009). https://doi.org/10.1016/j.jallcom.2008.12.100
  17. J. G. Fisher, M. S. Kim, H. Y. Lee, and S. J. L. Kang, "Effect of $Li_2O$ and PbO Additions on Abnormal Grain Growth in the $Pb(Mg_{1/3}Nb_{2/3})O_{3}-35 $ mol% $PbTiO_3$ System," J. Am. Ceram. Soc., 87 [5] 937-42 (2004). https://doi.org/10.1111/j.1551-2916.2004.00937.x
  18. W. Qu, X. Zhao, and X. Tan, "In-Situ Transmission Electron Microscopy Study of the Nanodomain Growth in a Sc-Doped Lead Magnesium Niobate Ceramic," Appl. Phys. Lett., 89 022904 1-3 (2006).
  19. H. Birol, D. Damjanovic, and N. Setter, "Preparation and Characterization of $(K_{0.5}Na_{0.5})NbO_{3}$ Ceramics," J. Eur. Ceram. Soc., 26 861-66 (2006). https://doi.org/10.1016/j.jeurceramsoc.2004.11.022
  20. M. Matsubara, T. Yamaguchi, K. Kikuta, and S. Hirano, "Sinterability and Piezoelectric Properties of $(K,Na)NbO_3$ Ceramics with Novel Sintering Aid," Jpn. J. Appl. Phys., 43 [10] 7159-63 (2004). https://doi.org/10.1143/JJAP.43.7159
  21. A. Shigemi and T. Wada, "Enthalpy of Formation of Various Phases and Formation Energy of Point Defects in Perovskite-Type $NaNbO_3$ by First-Principles Calculation," Jpn. J. Appl. Phys., 43 [9B] 6793-98 (2004). https://doi.org/10.1143/JJAP.43.6793
  22. A. Shigemi and T. Wada, "Evaluations of Phases and Vacancy Formation Energies in $KNbO_3$ by First-Principles Calculation," Jpn. J. Appl. Phys., 44 [11] 8048-54 (2005). https://doi.org/10.1143/JJAP.44.8048
  23. H. Gleiter, "The Mechanism of Grain Boundary Migration," Acta. Metall., 17 565-73 (1969). https://doi.org/10.1016/0001-6160(69)90115-1
  24. K. L. Merkle and L. J. Thompson, "Atomic-Scale Observation of Grain Boundary Motion," Mater. Lett., 48 188-93 (2001). https://doi.org/10.1016/S0167-577X(00)00301-3
  25. S. B. Lee and Y. M. Kim, "Kinetic Roughening of a ${\Sigma}5$ Tilt Grain Boundary in $SrTiO_3$," Acta. Mater., 57 5264-9 (2009). https://doi.org/10.1016/j.actamat.2009.07.029
  26. J. P. Hirth and G. M. Pound, "Chapter D: Growth and Evaporation of Liquids and Dislocation-Free Crystals," p. 77-101, Condensation and Evaporation: Nucleation and Growth Kinetics Oxford: Pergamon Press; 1963.
  27. H. Gleiter, "The Formation of Annealing Twins," Acta. Metall., 17 1421-28 (1969). https://doi.org/10.1016/0001-6160(69)90004-2
  28. J. P. van der Eerden, Chapter 6: "Crystal Growth Mechanisms," p. 311-475 in: D.T.J Hurle (Ed.), Handbook of Crystal Growth, Vol. 1, Fundamentals, Part A, Thermodynamics and Kinetics, Amsterdam: Elsevier Science Publishers; 1993.
  29. S. D. Peteves and R. Abbaschian,"Growth Kinetics of Solid-Liquid Ga Interfaces: Part II. Theoretical," Metall. Trans. A., 22 1271-86 (1991). https://doi.org/10.1007/BF02660659
  30. D. Y. Yoon, C. W. Park, and J. B. Koo, "The Step Growth Hypothesis for Abnormal Grain Growth," pp. 3-21 in: H. I. Yoo, S. J. L. Kang (Eds.), Ceramic Interfaces 2 London: Institute of Materials; 2001.
  31. H. J. Leamy and G. H. Gilmer, "The Equilibrium Properties of Crystal Surface Steps," J. Cryst. Growth., 24/25 499-502 (1974). https://doi.org/10.1016/0022-0248(74)90365-0
  32. H. van Beijeren, "Exactly Solvable Model for the Roughening Transition of a Crystal Surface," Phys. Rev. Lett., 38 [18] 993-96 (1977). https://doi.org/10.1103/PhysRevLett.38.993
  33. B. K. Lee, S. Y. Chung, and S. J. L. Kang, "Grain Boundary Faceting and Abnormal Grain Growth in $BaTiO_3$," Acta. Mater., 48 1575-80 (2000). https://doi.org/10.1016/S1359-6454(99)00434-6
  34. Y. I. Jung, S. Y. Choi, and S. J. L. Kang, "Effect of Oxygen Partial Pressure on Grain Boundary Structure and Grain Growth Behavior in $BaTiO_3$," Acta. Mater., 54 2849-55 (2006). https://doi.org/10.1016/j.actamat.2006.02.025
  35. S. Y. Chung, D. Y. Yoon, and S. J. L. Kang, "Effect of Donor Concentration and Oxygen Partial Pressure on Interface Morphology and Grain Growth Behaviour in $SrTiO_3$," Acta. Mater., 50 3361-71 (2002). https://doi.org/10.1016/S1359-6454(02)00139-8
  36. Y. M. Chiang, D. Birnie III, and W. D. Kingery, "Chapter 2: Defects in Ceramics," pp. 101-184, Physical Ceramics: Principles for Ceramic Science and Engineering. New York: John Wiley & Sons; 1997.
  37. W. K. Burton, N. Cabrera, and F. C. Frank, "The Growth of Crystals and the Equilibrium Structure of their Surfaces," Philos. Trans. R. Soc. Lon. Ser. A., 243 299-358 (1951). https://doi.org/10.1098/rsta.1951.0006
  38. E. D. Williams and N. C. Bartelt, "Thermodynamics of Surface Morphology," Science, 251 393-400 (1991). https://doi.org/10.1126/science.251.4992.393
  39. E. D. Williams, "Surface Steps and Surface Morphology: Understanding Macroscopic Phenomena from Atomic Observations," Surface Science, 299/300 502-24 (1994). https://doi.org/10.1016/0039-6028(94)90678-5
  40. C. A. Randall, N. Kim, J. P. Kucera, W. Cao, and T. R. Shrout, "Intrinsic and Extrinsic Size Effects in Fine-Grained Morphotropic-Phase-Boundary Lead Zirconate Titanate Ceramics," J. Am. Ceram. Soc., 81 [3] 677-88 (1998).

Cited by

  1. Growth of (Na0.5Bi0.5)TiO3-Ba(Ti1-xZrx)O3 single crystals by solid state single crystal growth vol.34, pp.2-3, 2015, https://doi.org/10.1007/s10832-014-9964-7
  2. Solid-State Conversion of Single Crystals: The Principle and the State-of-the-Art vol.98, pp.2, 2015, https://doi.org/10.1111/jace.13420
  3. Strategies and practices for suppressing abnormal grain growth during liquid phase sintering pp.1551-2916, 2018, https://doi.org/10.1111/jace.16008
  4. Nickel and cobalt adsorption on hydroxyapatite: a study for the de-metalation of electronic industrial wastewaters vol.25, pp.3, 2011, https://doi.org/10.1007/s10450-019-00066-w
  5. Effect of Composition on the Growth of Single Crystals of (1−x)(Na1/2Bi1/2)TiO3-xSrTiO3 by Solid State Crystal Growth vol.12, pp.15, 2011, https://doi.org/10.3390/ma12152357
  6. Controlled-Atmosphere Sintering of KNbO3 vol.10, pp.6, 2011, https://doi.org/10.3390/app10062131
  7. Growth of single crystals in the (Na1/2Bi1/2)TiO3-(Sr1-xCax)TiO3 system by solid state crystal growth vol.10, pp.5, 2011, https://doi.org/10.1007/s40145-021-0481-2