DOI QR코드

DOI QR Code

Anti-diabetic Effects of Hemicentrotus pulcherrimus Shells on Non-obese Type 2 Diabetic Goto-Kakizaki Rats

말똥성게(Hemicentrotus pulcherrimus) 껍질 추출물의 Goto-Kakizaki 흰쥐에 대한 항당뇨 효과

  • Kim, Kil-Soo (College of Veterinare Medicine, Kyungpook National University) ;
  • Kim, Dae-Ik (Daegu Technopark Bio Health Convergence Center) ;
  • Lim, Ae-Kyoung (Daegu Technopark Bio Health Convergence Center) ;
  • Yoon, Sung-Ran (Daegu Technopark Bio Health Convergence Center) ;
  • Kim, Jung-Ok (Daegu Gyeongbuk Institute for Oriental Medicine Industry) ;
  • Lee, Gee-Dong (Nutrition Education, Graduate School of Education, Joongbu University)
  • 김길수 (경북대학교 수의과대학) ;
  • 김대익 ((재)대구테크노파크 바이오헬스융합센터) ;
  • 임애경 ((재)대구테크노파크 바이오헬스융합센터) ;
  • 윤성란 ((재)대구테크노파크 바이오헬스융합센터) ;
  • 김정옥 (대구경북한방산업진흥원) ;
  • 이기동 (중부대학교 교육대학원 영양교육)
  • Received : 2011.06.17
  • Accepted : 2011.10.31
  • Published : 2011.11.30

Abstract

We investigated the anti-diabetic effects of Hemicentrotus pulcherrimus (sea urchin, SU) shells on non-obese type 2 diabetic Goto-Kakizaki (GK) rats. We measured body weight, blood glucose, and plasma insulin levels and conducted an oral glucose tolerance test (OGTT). The SU shells (100 and 200 mg/kg) significantly reduced the blood glucose of GK rats from 203.8${\pm}$29.8 mg/dL to 138.5${\pm}$21.2 mg/dL at after 4 weeks of daily oral administration. However, plasma insulin levels at the same time were not changed by treatment with SU. During the OGTT, the SU-treated GK rats maintained a lower blood glucose level than the control group for 15 to 120 min. Based on these results, SU shells are considered to be effective in improving glucose tolerance. These results suggest that SU shells have unique properties to lower blood glucose, raise insulin sensitivity, and improve insulin resistance in GK rats.

본 연구는 제2형 당뇨동물모델인 Goto-Kakizaki(GK)랫드에 대한 성게껍질의 항당뇨 효과를 조사하였다. 즉 Wistar 랫드로 구성된 정상군, GK랫드 대조군, GK랫드에 성게껍질을 각각 100 mg/kg 및 200 mg/kg 투여군으로 나누고 매일 1회씩 4주간 경구투여 하여 체중, 혈당, 혈장 인슐린 농도 및 경구당부하 검사를 실시하였다. 그 결과 성게껍질을 투여한 GK랫드의 혈당은 203.8${\pm}$29.8 mg/dL에서 138.5${\pm}$21.2 mg/dL로 유의적으로 감소하였다. 그러나 성게껍질투여에 따른 GK랫드의 혈장 내 인슐린 농도의 변화는 없었다. 경구당부하 검사에서 성게껍질을 투여한 GK랫드는 15~120분에서 대조군보다 더 낮은 혈당으로 나타났다. 또한 췌장의 조직학적 변화는 성게껍질을 투여한 랫드에서 전체적인 췌도세포의 크기나 공포성 변화 및 선방세포의 배열 및 크기가 대조군에 비하여 정상군에 근접한 형태로 나타났다. 따라서 성게껍질은 당뇨모델인 GK 랫드의 혈당을 저하시키고 내당능이나 인슐린저항성을 개선하므로 향후 이를 활용하여 항당뇨 식품 및 원료개발에 활용될 것으로 기대된다.

Keywords

References

  1. Reaven GM. 1988. Role of insulin resistance in human disease. Diabetes 37: 1595-607. https://doi.org/10.2337/diabetes.37.12.1595
  2. Landau BR, Wahren J, Chandramouli V, Schumann WC, Ekberg K, Kalhan SC. 1996. Contributions of gluconeogenesis to glucose production in the fasted state. J Clin Invest 98: 378-385. https://doi.org/10.1172/JCI118803
  3. Beckman JA, Creager MA, Libby P. 2002. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 287: 2570-2581. https://doi.org/10.1001/jama.287.19.2570
  4. Fonseca V. 2006. The role of basal insulin therapy in patients with type 2 diabetes mellitus. Insulin 1: 51-60. https://doi.org/10.1016/S1557-0843(06)80010-2
  5. Cavaghan MK, Ehrmann DA, Polonsky KS. 2000. Interactions between insulin resistance and insulin secretion in the development of glucose intolerance. J Clin Invest 106: 329-333. https://doi.org/10.1172/JCI10761
  6. Kim UJ, Min HK. 2005. Diabetes mellitus. Korea Diabetes Association. Korea Medical Books, Seoul, Korea. p 165-197.
  7. Marles R, Farnsworth N. 1995. Antidiabetic plants and their active constituents. Phytomedicine 2: 137-165. https://doi.org/10.1016/S0944-7113(11)80059-0
  8. Yeh GY, Eisenberg DM, Kaptchuk TJ, Phillips RS. 2003. Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care 26: 1277-1294. https://doi.org/10.2337/diacare.26.4.1277
  9. Cheng A, Fantus I. 2005. Oral antihyperglycemic therapy for type 2 diabetes mellitus. Can Med Assoc J 172: 213-226. https://doi.org/10.1503/cmaj.1031414
  10. Park YB, Kim IS, Yoo SJ, Ahn JK, Lee TG, Park DC, Kim SB. 1988. Elucidation of anti-tumor initiator and promoter derived form seaweed-2: investigation of seaweed extracts suppressing mutagenic activity of PhIP and MeIQx. J Korean Fish Soc 31: 581-586.
  11. Ryu BH, Kim DS, Cho KJ, Sin DB. 1989. Antitumor activity of seaweeds toward sarcoma-180. Korean J Food Sci Technol 21: 595-600.
  12. Yu TJ. 1999. Food Donguibogam. Academy Books, Seoul, Korea. p 337-338.
  13. Kim KU, Jeong YJ, Kim OM, Park NY, Lee KH. 2002. Effect of sea urchin shell on egg quality. J Korean Soc Food Sci Nutr 31: 373-377. https://doi.org/10.3746/jkfn.2002.31.3.373
  14. Nam HK. 1986. The composition of fatty and amino acid for sea urchin. J Korean Oil Chemists' Soc 3: 33-37.
  15. Kim JM, Yokoyama K. 1997. Effects of alkaline ionized water on spontaneously diabetic GK-rats fed sucrose. Korean J Lab Anim Sci 13: 187-190.
  16. Lee MR, Hong JW, No YS, Jeong SG, Cho JY, Choi SN, Choi SY, Kim YR, Song JC, Kim KS. 2006. Antidiabetic effects of calcium ion water in neonatal streptozotocin-induced noninsulin-dependent diabetes mellitus in rats. Laboratory Animal Research 22: 67-70.
  17. Seok YM, Kim J, Choi KC, Yoon CH, Boo YC, Park Y, Park KM. 2007. Wen-pi-tang-Hab-Wuling-san attenuates kidney ischemia/reperfusion injury in mice. A role for antioxidant enzymes and heat-shock proteins. J Ethnopharmacol 112: 333-340. https://doi.org/10.1016/j.jep.2007.03.015
  18. Cambell RK, Steil CF. 1998. Diabetes clinical pharmacy and therapeutics. William & Wilks, Washington, DC, USA. p 48-61.
  19. Taylor SI, Accili D, Imai Y. 1994. Insulin resistance or insulin deficiency. Which is the primary cause of NIDDM? Diabetes 43: 735-740. https://doi.org/10.2337/diab.43.6.735
  20. DeFronzo RA. 1992. Pathogenesis of type 2 (non-insulindependent) diabetes mellitus: a balanced overview. Diabetologia 35: 389-397. https://doi.org/10.1007/BF00401208
  21. Goto Y, Kakizaki M, Masaki N. 1976. Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J Exp Med 119: 85-90. https://doi.org/10.1620/tjem.119.85
  22. Eriksson KF, Lindgärde F. 1991. Prevention of type 2 (noninsulin- dependent) diabetes mellitus by diet and physical exercise. The 6-year Malmö feasibility study. Diabetologia 34: 891-898. https://doi.org/10.1007/BF00400196
  23. Schulla V, Renström E, Feil R, Feil S, Franklin I, Gjinovci A, Jing XJ, Laux D, Lundauist I, Magnson, MA, Obermüller S, Olofsson C, Salehi A, Wendt A, Klugbauer N, Wolheim CB, Rorsman P, Hofmann F. 2003. Impaired insulin secretion and glucose tolerance in $\beta$ cell-selective Cav1.2 $Ca^{2+}$ channel null mice. EMBO J 22: 3844-3854. https://doi.org/10.1093/emboj/cdg389
  24. Smith PA, Rorsmann P, Ashcroft FM. 1989. Modulation of dihydropyridine-sensitive $Ca^{2+}$ channels by glucose metabolism in mouse pancreatic beta-cells. Nature 342: 550-553. https://doi.org/10.1038/342550a0
  25. Ashcroft FM, Proks P, Smith PA, Ammälä C, Bokvist K, Rorsman P. 1994. Stimulus-secretion coupling in pancreatic $\beta$ cells. J Cell Biochem 55S: 54-65.
  26. Sher E, Giovnnini F, Codignola A, Passafaro M, Giorgi-Rossi P, Volsen S, Craig P, Davalli A, Carrera P. 2003. Voltage-operated calcium channel heterogeneity in pancreatic $\beta$ cells: physiopathological implications. J Bioenerg Biomemb 35: 687-696. https://doi.org/10.1023/B:JOBB.0000008032.49504.48
  27. Curry DL, Bennett LL, Grodsky GM. 1968. Dynamics of insulin secretion by the perfused rat pancreas. Endocrinology 83: 572-584. https://doi.org/10.1210/endo-83-3-572
  28. Rajan AS, Aguilar-Bryan L, Nelson DA, Yaney GC, Hsu WH, Kunze DL, Boydill AE. 1990. Ion channels and insulin secretion. Diabetes Care 13: 340-363. https://doi.org/10.2337/diacare.13.3.340
  29. Joo EJ, Cha YS, Park ES. 1996. Correlation among serum and urinary calcium, zinc, magnesium and other factors in non-insulin dependent diabetic women. J Korean Soc Food Sci Nutr 25: 601-607.
  30. Rose T, Efendic S, Rupnik M. 2007. $Ca^{2+}$-secretion coupling is impaired in diabetic Goto Kakizaki rats. J Gen Physiol 129: 493-508. https://doi.org/10.1085/jgp.200609604

Cited by

  1. Analysis on operating efficiency of shell divider using the principle of the lever for the purple sea urchin, Anthocidaris crassispina vol.50, pp.1, 2014, https://doi.org/10.3796/KSFT.2014.50.1.083
  2. Diversity of Polyhydroxynaphthoquinone Pigments in North Pacific Sea Urchins vol.14, pp.9, 2017, https://doi.org/10.1002/cbdv.201700182
  3. Effect of Mineral-rich Salt Intake on Diabetic Goto-Kakizaki Rats vol.43, pp.3, 2014, https://doi.org/10.3746/jkfn.2014.43.3.355