DOI QR코드

DOI QR Code

Optimal Reaction Conditions and Radical Scavenging Activities for the Bioconversion of Green Tea Using Tannase

Tannase를 이용한 녹차의 생물학적 전환의 최적 조건 마련 및 라디칼 소거능

  • Received : 2011.07.12
  • Accepted : 2011.10.20
  • Published : 2011.11.30

Abstract

In this study, we optimized the reaction conditions for the bioconversion of green tea using tannase, and to evaluate its radical scavenging activities. Tea catechins such as (-)-epigallocatechin gallate (EGCG) or (-)-epicatechin gallate (ECG) were hydrolyzed by tannase to produce (-)-epigallocatechin (EGC) or (-)-epicatechin (EC), respectively, and a common product, gallic acid. The bioconversion of tea catechins by tannase was increased as enzyme concentration, substrate concentration and incubation time for enzyme dose. The results indicated the optimum reaction conditions for tannase were tannase 30 U/mL (enzyme concentration) on 1% green tea (substrate concentration) for 1 hr (incubation time for enzyme). Tannase enhanced the radical-scavenging properties of green tea; the 2,2-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals scavenging abilities were significantly (p<0.001) greater for the tannase-treated green tea extract compared to the untreated green tea extract. It is reported that ECG has the greatest antioxidant activity among the catechins in green tea, and the release of gallic acid is considered to be beneficial because of its significant antioxidant potency. The results of this study suggest that the tannase-treated green tea increases antioxidant activities under optimum reaction conditions.

본 연구는 tannase를 이용하여 녹차의 생물학적 전환에 대한 최적 추출 조건을 확립하고 최적 추출 조건으로 마련된 녹차 추출물에 대해 라디칼 소거능 검증을 통해 항산화력의 향상 정도를 평가하고자 하였다. 그 결과 tannase의 반응은 0.5시간 내에 대부분 이루어지며 처리 1시간까지도 일부 작용이 이루어져 최적 추출물을 획득하기 위한 tannase의 반응 시간을 1시간으로 결정하였다. 기질 농도 1% 이상의 경우에서는 EC 및 EGC 전환율이 오히려 낮아져 tannase 작용을 위한 기질 농도는 1%가 적당한 것으로 판단되었다. 또한 tannase 농도가 증가함에 따라 EC, EGC 및 gallic acid는 증가되었으며 일정 농도(30 U/mL)에서 급격한 증가를 나타내었고, 이 농도부터는 통계적으로 EC와 EGC 전환율이 증가하지 않는 것으로 보아 tannase의 적정 반응 농도는 30 U/mL으로 판단되었다. 위의 조건으로 마련된 최적의 tannase 처리 녹차 추출물의 라디칼 소거능은 tannase 처리 전 녹차 추출물에 비해 ABTS와 DPPH 라디칼에 있어 모두 유의하게 소거능이 증가되는 것으로 나타나 tannase 처리 최적 추출 조건에 의해 녹차의 항산화력이 향상됨을 알 수 있었다.

Keywords

References

  1. Goli AH, Barzegar M, Sahari MA. 2005. Antioxidant activity and total phenolic compounds of pistachio (Pistachia vera) hull extracts. Food Chem 92: 521-525. https://doi.org/10.1016/j.foodchem.2004.08.020
  2. Wang H, Provan GJ, Helliwell K. 2000. Tea flavonoids: their functions, utilization and analysis. Trends Food Sci Technol 11: 152-160. https://doi.org/10.1016/S0924-2244(00)00061-3
  3. Stoner GD, Mukhtar H. 1995. Polyphenols as cancer chemopreventive agents. J Cell Biochem Suppl 22: 169-180.
  4. Zhu Q, Zhang A, Tsang D, Huang Y, Chen Z. 1997. Stability of green tea catechins. J Agric Food Chem 45: 4624-4628. https://doi.org/10.1021/jf9706080
  5. Furukawa A, Oikawa S, Murata M, Hiraku Y, Kawanishi S. 2003. (-)-Epigallocatechin gallate causes oxidative damage to isolated and cellular DNA. Biochem Pharmacol 66: 1769-1778. https://doi.org/10.1016/S0006-2952(03)00541-0
  6. Oikawa S, Kawanishi S. 1998. Distinct mechanisms of sitespecific DNA damage induced by endogenous reductants in the presence of iron (III) and copper (II). Biochim Biophys Acta 1399: 19-30. https://doi.org/10.1016/S0167-4781(98)00092-X
  7. Bertram B, Bollow U, Rajaee-Behbahani N, Burkle A, Schmezer P. 2003. Induction of poly(ADP-ribosyl)ation and DNA damage in human peripheral lymphocytes after treatment with (-)-epigallocatechin gallate. Mutat Res 534: 77-84. https://doi.org/10.1016/S1383-5718(02)00245-0
  8. Malik A, Azam S, Hadi N, Hadi SM. 2003. DNA degradation by water extract of green tea in the presence of copper ions: implications for anticancer properties. Phytother Res 17: 358-363. https://doi.org/10.1002/ptr.1149
  9. Garcia-Conesa MT, Ostergaard P, Kauppinen S, Williamson G. 2001. Hydrolysis of diethyl diferulates by a tannase from Aspergillus oryzae. Carbohydr Polym 44: 319-324. https://doi.org/10.1016/S0144-8617(00)00248-4
  10. Lu MJ, Chen C. 2007. Enzymatic tannase treatment of green tea increases in vitro inhibitory activity against N-nitrosation of dimethylamine. Process Biochem 42: 1285-1290. https://doi.org/10.1016/j.procbio.2007.06.003
  11. Lekha PK, Lonsane BK. 1997. Production and application of tannin acyl hydrolase: state of the art. Adv Appl Microbiol 44: 216-260.
  12. Niho N, Shibutani M, Tamura T, Toyoda K, Uneyama C, Takahashi N, Hirose M. 2001. Subchronic toxicity study of gallic acid by oral administration in F344 rats. Food Chem Toxicol 39: 1063-1070. https://doi.org/10.1016/S0278-6915(01)00054-0
  13. Cao X, Ito Y. 2004. Preparation and purification of epigalloscatechin by high-speed countcurrent chromactography (HSCCC). J Liq Chromatogr RT 27: 145-152. https://doi.org/10.1081/JLC-120027091
  14. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  15. Cheung LM, Cheung PCK, Ooi VEC. 2003. Antioxidant activity and total polyphenolics of edible mushroom extracts. Food Chem 81: 249-255. https://doi.org/10.1016/S0308-8146(02)00419-3
  16. Thomas RL, Murtagh K. 1985. Characterization of tannase activity on tea extracts. J Food Sci 50: 1126-1129. https://doi.org/10.1111/j.1365-2621.1985.tb13026.x
  17. Hong YH. 2010. Development of cosmeceuticals using the enzymatic conversion of green tea extracts: focusing on anti-oxidant, anti-wrinkles and whitening effects. PhD Dissertation. Donduk Women's University, Seoul, Korea. p 90-123.
  18. Mohapatra PKD, Mondal KC, Pati BR. 2007. Production of tannase by the immobilized cells of Bacillus licheniformis KBR6 in Ca-alginate beads. J Appl Microbiol 102: 1462-467. https://doi.org/10.1111/j.1365-2672.2006.03207.x
  19. Mahadevan A, Sivaswamy SN. 1985. Tannins and microorganisms. In Frontiers in Applied Microbiology. Mukerji KG, Pathak NC, Singh VP, eds. Rastogi and Company, Meerut, India. p 327-347.
  20. Sabu A, Kiran GS, Pandey A. 2005. Purification of tannin acyl hydrolase from A. niger. Food Technol Biotechnol 43: 133-138.
  21. Oyaizu M. 1986. Studies on product of browning reaction prepared from glucosamine. Jpn J Nutr 44: 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  22. Lu MJ, Chen C. 2008. Enzymatic modification by tannase increases the antioxidant activity of green tea. Food Res Int 41: 130-137. https://doi.org/10.1016/j.foodres.2007.10.012
  23. Ian RR, Joanne ML. 2001. Simulated intestinal digestion of green and black teas. Food Chem 73: 481-486. https://doi.org/10.1016/S0308-8146(01)00131-5
  24. Soong YY, Barlow PJ. 2006. Quantification of gallic acid and ellagic acid from longan (Dimocarpus longan Lour.) seed and mango (Mangifera indica L.) kernel and their effects on antioxidant activity. Food Chem 97: 524-530. https://doi.org/10.1016/j.foodchem.2005.05.033
  25. Lekha PK, Lonsane BK. 1997. Production and application of tannin acyl hydrolase: state of the art. Adv Appl Microbiol 44: 215-260. https://doi.org/10.1016/S0065-2164(08)70463-5
  26. Niho N, Shibutani M, Tamura T, Toyoda K, Uneyama C, Takahashi N, Hirose M. 2001. Subchronic toxicity study of gallic acid by oral administration in F344 rats. Food Chem Toxicol 39: 1063-1070. https://doi.org/10.1016/S0278-6915(01)00054-0
  27. Richards J, Adams F. 1987. Study of reaction rates of the antioxidants gallic acid, BHA and BHT using the technique of plus radiolysis. Int J Food Sci Technol 22: 501-508.

Cited by

  1. Catechine biotransformation by tannase with sequential addition of substrate vol.49, pp.2, 2014, https://doi.org/10.1016/j.procbio.2013.11.001