References
- Moncada, S., Palmer, R. and Higgs, E. (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 143, 109-141.
- Cooke, J. and Dzau, V. (1997) Nitric oxide synthase: role in the genesis of vascular disease. Annu. Rev. Med. 48, 489-510. https://doi.org/10.1146/annurev.med.48.1.489
- Palmer, R., Ferrige, A. and Moncada, S. (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327, 524-526. https://doi.org/10.1038/327524a0
- Bogdan, C. (2001) Nitric oxide and the immune response. Nat. Immunol. 2, 907-916. https://doi.org/10.1038/ni1001-907
- Moilanen, E. and Vapaatalo, H. (1995) Nitric oxide in inflammation and immune response. Ann. Med. 27, 359-367. https://doi.org/10.3109/07853899509002589
- Bredt, D., Hwang, P. and Snyder, S. (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347, 768-770. https://doi.org/10.1038/347768a0
- Calabrese, V., Mancuso, C., Calvani, M., Rizzarelli, E., Butterfield, D. and Giuffrida Stella, A. (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 8, 766-775. https://doi.org/10.1038/nrn2214
- Murohara, T., Asahara, T., Silver, M., Bauters, C., Masuda, H., Kalka, C., Kearney, M., Chen, D., Dymes, J. F., Fishman, M. C., Huang, P. L. and Isner, J. M. (1998) Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J. Clin. Invest. 101, 2567-2578. https://doi.org/10.1172/JCI1560
- Jenkins, D., Charles, I., Thomsen, L., Moss, D., Holmes, L., Baylis, S., Rhodes, P., Westmore, K., Emson, P. and Moncada, S. (1995) Roles of nitric oxide in tumor growth. Proc. Natl. Acad. Sci. U.S.A. 92, 4392-4396. https://doi.org/10.1073/pnas.92.10.4392
- Harris, A. (2002) Hypoxia-a key regulatory factor in tumour growth. Nat. Rev. Cancer 2, 38-47. https://doi.org/10.1038/nrc704
- Rees, D., Palmer, R., Schulz, R., Hodson, H. and Moncada, S. (1990) Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Brit. J. Pharmacol. 101, 746-752. https://doi.org/10.1111/j.1476-5381.1990.tb14151.x
- Gladwin, M., Crawford, J. and Patel, R. (2004) The biochemistry of nitric oxide, nitrite, and hemoglobin: role in blood flow regulation. Free Radical Bio. Med. 36, 707-717. https://doi.org/10.1016/j.freeradbiomed.2003.11.032
- Sessa, W., Pritchard, K., Seyedi, N., Wang, J. and Hintze, T. (1994) Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ. Res. 74, 349-353. https://doi.org/10.1161/01.RES.74.2.349
- Bredt, D. and Snyder, S. (1989) Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc. Natl. Acad. Sci. U.S.A. 86, 9030-9033. https://doi.org/10.1073/pnas.86.22.9030
- Bredt, D. and Snyder, S. (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. U.S.A. 87, 682-685. https://doi.org/10.1073/pnas.87.2.682
- Itoh, Y., Ma, F., Hoshi, H., Oka, M., Noda, K., Ukai, Y., Kojima, H., Nagano, T. and Toda, N. (2000) Determination and bioimaging method for nitric oxide in biological specimens by diaminofluorescein fluorometry. Anal. Biochem. 287, 203-209. https://doi.org/10.1006/abio.2000.4859
- Bedioui, F. and Villeneuve, N. (2003) Electrochemical nitric oxide sensors for biological samples-principle, selected examples and applications. Electroanal. 15, 5-18. https://doi.org/10.1002/elan.200390006
- Bedioui, F., Quinton, D., Griveau, S. and Nyokong, T. (2010) Designing molecular materials and strategies for the electrochemical detection of nitric oxide, superoxide and peroxynitrite in biological systems. Phys. Chem. Chem. Phys. 12, 9976-9988. https://doi.org/10.1039/c0cp00271b
- Arbault, S., Sojic, N., Bruce, D., Amatore, C., Sarasin, A. and Vuillaume, M. (2004) Oxidative stress in cancer prone xeroderma pigmentosum fibroblasts. Real-time and single cell monitoring of superoxide and nitric oxide production with microelectrodes. Carcinogenesis 25, 509-515.
- Amatore, C., Arbault, S., Bouret, Y., Cauli, B., Guille, M., Rancillac, A. and Rossier, J. (2006) Nitric oxide release during evoked neuronal activity in cerebellum slices: Detection with platinized carbon-fiber microelectrodes. Chem. Phys. Chem. 7, 181-187. https://doi.org/10.1002/cphc.200500202
- Amatore, C., Arbault, S., Jaouen, G., Koh, A., Leong, W., Top, S., Valleron, M. and Woo, C. (2010) Pro-oxidant properties of AZT and other thymidine analogues in macrophages: Implication of the azido moiety in oxidative stress. Chem. Med. Chem. 5, 296-301. https://doi.org/10.1002/cmdc.200900464
- Patel, B., Arundell, M., Parker, K., Yeoman, M. and O'Hare, D. (2006) Detection of nitric oxide release from single neurons in the pond snail, lymnaea stagnalis. Anal. Chem. 78, 7643-7648. https://doi.org/10.1021/ac060863w
- Patel, B., Arundell, M., Parker, K., Yeoman, M. and O'Hare, D. (2010) Microelectrode investigation of neuroneal ageing from a single identified neurone. Phys. Chem. Chem. Phys. 12, 10065-10072. https://doi.org/10.1039/c0cp00310g
- Quinton, D., Girard, A., Kim, L., Raimbault, V., Griscom, L., Razan, F., Griveau, S. and Bedioui, F. (2011) On-chip multi-electrochemical sensor array platform for simultaneous screening of nitric oxide and peroxynitrite. Lab. Chip. 11, 1342-1350. https://doi.org/10.1039/c0lc00585a
- Chang, S., Pereira-Rodrigues, N., Henderson, J., Cole, A., Bedioui, F. and McNeil, C. (2005) An electrochemical sensor array system for the direct, simultaneous in vitro monitoring of nitric oxide and superoxide production by cultured cells. Biosens. Bioelectron. 21, 917-922. https://doi.org/10.1016/j.bios.2005.02.015
- Isik, S., Berdondini, L., Oni, J., Blochl, A., Koudelka-Hep, M. and Schuhmann, W. (2005) Cell-compatible array of three-dimensional tip electrodes for the detection of nitric oxide release. Biosens. Bioelectron. 20, 1566-1572. https://doi.org/10.1016/j.bios.2004.08.022
- Oni, J., Pailleret, A., Isik, S., Diab, N., Radtke, I., Blochl, A., Jackson, M., Bedioui, F. and Schuhmann, W. (2004) Functionalised electrode array for the detection of nitric oxide released by endothelial cells using different no-sensing chemistries. Anal. Bioanal. Chem. 378, 1594-1600. https://doi.org/10.1007/s00216-004-2512-6
- Trouillon, R., Kang, D.-K., Chang, S.-I. and O'Hare, D. (2011) Angiogenin induces nitric oxide release independently from its RNase activity. Chem. Commun. 47, 3421-3426. https://doi.org/10.1039/c0cc04527f
- Patel, B., Arundell, M., Quek, R., Harvey, S., Ellis, I., Florence, M., Cass, A., Schor, A. and O'Hare, D. (2008) Individually addressable microelectrode array for monitoring oxygen and nitric oxide release. Anal. Bioanal. Chem. 390, 1379-1387. https://doi.org/10.1007/s00216-007-1803-0
- Trouillon, R., Cheung, C., Patel, B. and O'Hare, D. (2009) Comparative study of poly (styrene-sulfonate)/poly (L-lysine) and fibronectin as biofouling preventing layers in dissolved oxygen electrochemical measurements. Analyst 134, 784-793. https://doi.org/10.1039/b811958a
- Trouillon, R., Combs, Z., Patel, B. and O'Hare, D. (2009) Comparative study of the effect of various electrode membranes on biofouling and electrochemical measurements. Electrochem. Commun. 11, 1409-1413. https://doi.org/10.1016/j.elecom.2009.05.018
- Wisniewski, N. and Reichert, M. (2000) Methods for reducing biosensor membrane biofouling. Colloid. Surface. B 18, 197-219. https://doi.org/10.1016/S0927-7765(99)00148-4
- Trouillon, R., Cheung, C., Patel, B. and O'Hare, D. (2010) Electrochemical study of the intracellular transduction of vascular endothelial growth factor induced nitric oxide synthase activity using a multi-channel biocompatible microelectrode array. BBA-Gen. Subjects 1800, 929-936. https://doi.org/10.1016/j.bbagen.2010.04.010
- Shibuya, M. (2008) Vascular endothelial growth factor-dependent and-independent regulation of angiogenesis. BMB Rep. 41, 278-286. https://doi.org/10.5483/BMBRep.2008.41.4.278
- Dimmeler, S., Dernbach, E. and Zeiher, A. (2000) Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for VEGF-induced endothelial cell migration. FEBS Lett. 477, 258-262. https://doi.org/10.1016/S0014-5793(00)01657-4
- Chlench, S., Mecha Disassa, N., Hohberg, M., Hoffmann, C., Pohlkamp, T., Beyer, G., Bongrazio, M., Da Silva-Azevedo, L., Baum, O., Pries, A. R. and Zakrzewicz, A. (2007) Regulation of Foxo-1 and the angiopoietin-2/Tie2 system by shear stress. FEBS Lett. 581, 673-680. https://doi.org/10.1016/j.febslet.2007.01.028
- Breslin, J., Pappas, P., Cerveira, J., Hobson, R. and Duran, W. (2003) VEGF increases endothelial permeability by separate signaling pathways involving ERK-1/2 and nitric oxide. Am. J. Physiol.-Heart C. 284, H92-100. https://doi.org/10.1152/ajpheart.00330.2002
- Fett, J., Strydom, D., Lobb, R., Alderman, E., Bethune, J., Riordan, J. and Vallee, B. (1985) Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 24, 5480-5486. https://doi.org/10.1021/bi00341a030
- Kishimoto, K., Liu, S., Tsuji, T., Olson, K. and Hu, G.-F. (2004) Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis. Oncogene 24, 445-456.
- Hirukawa, S., Olson, K., Tsuji, T. and Hu, G.-F. (2005) Neamine inhibits xenografic human tumor growth and angiogenesis in athymic mice. Clin. Cancer Res. 11, 8745-8752. https://doi.org/10.1158/1078-0432.CCR-05-1495
- Trouillon, R., Kang, D.-K., Park, H., Chang, S.-I. and O'Hare, D. (2010) Angiogenin induces nitric oxide synthesis in endothelial cells through PI-3 and Akt kinases. Biochemistry 49, 3282-3288. https://doi.org/10.1021/bi902122w
- Shimoyama, S., Gansauge, F., Gansauge, S., Negri, G., Oohara, T. and Beger, H. (1996) Increased angiogenin expression in pancreatic cancer is related to cancer aggressiveness. Cancer Res. 56, 2703-2706.
- Cho, S., Moon, S., Lee, S., Kang, S., Kim, J., Lim, J., Kim, H., Kim, B. and Chung, H. (2007) Improvement of postnatal neovascularization by human embryonic stem cell-derived endothelial-like cell transplantation in a mouse model of hindlimb ischemia. Circulation 116, 2409-2419. https://doi.org/10.1161/CIRCULATIONAHA.106.687038
- Gao, X. and Xu, Z. (2008) Mechanisms of action of angiogenin. Acta. Biochim. Biophys. Sin. (Shanghai) 40, 619-624. https://doi.org/10.1111/j.1745-7270.2008.00442.x
- Hu, G., Riordan, J. and Vallee, B. (1994) Angiogenin promotes invasiveness of cultured endothelial cells by stimulation of cell-associated proteolytic activities. Proc. Natl. Acad. Sci. U.S.A. 91, 12096-12100. https://doi.org/10.1073/pnas.91.25.12096
- Russo, N., Shapiro, R., Acharya, K., Riordan, J. and Vallee, B. (1994) Role of glutamine-117 in the ribonucleolytic activity of human angiogenin. Proc. Natl. Acad. Sci. U.S.A. 91, 2920-2924. https://doi.org/10.1073/pnas.91.8.2920
- Liu, S., Yu, D., Xu, Z., Riordan, J. and Hu, G.-F. (2001) Angiogenin activates ERK 1/2 in human umbilical vein endothelial cells. Biochem. Bioph. Res. Co. 287, 305-310. https://doi.org/10.1006/bbrc.2001.5568
- Kim, H.-M., Kang, D.-K., Kim, H.-Y., Kang, S.-S. and Chang, S.-I. (2007) Angiogenin-induced protein kinase b/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells. Biochem. Bioph. Res. Co. 352, 509-513. https://doi.org/10.1016/j.bbrc.2006.11.047
- Xu, Z., Monti, D. and Hu, G.-F. (2001) Angiogenin activates human umbilical artery smooth muscle cells. Biochem. Bioph. Res. Co. 285, 909-914. https://doi.org/10.1006/bbrc.2001.5255
- Hu, G., Xu, C. and Riordan, J. (2000) Human angiogenin is rapidly translocated to the nucleus of human umbilical vein endothelial cells and binds to DNA. J. Cell. Biochem. 76, 452-462. https://doi.org/10.1002/(SICI)1097-4644(20000301)76:3<452::AID-JCB12>3.0.CO;2-Z
- Chen, C. and Shapiro, R. (1997) Site-specific mutagenesis reveals differences in the structural bases for tight binding of RNase inhibitor to angiogenin and RNase A. Proc. Natl. Acad. Sci. U.S.A. 94, 1761-1766. https://doi.org/10.1073/pnas.94.5.1761
- Shapiro, R. and Vallee, B. (1987) Human placental ribonuclease inhibitor abolishes both angiogenic and ribonucleolytic activities of angiogenin. Proc. Natl. Acad. Sci. U.S.A. 84, 2238-2241. https://doi.org/10.1073/pnas.84.8.2238
- Li, R., Riordan, J. and Hu, G.-F.(1997) Nuclear translocation of human angiogenin in cultured human umbilical artery endothelial cells is microtubule and lysosome independent. Biochem. Bioph. Res. Co. 238, 305-312. https://doi.org/10.1006/bbrc.1997.7290
- Hu, G.-F. (1998) Neomycin inhibits angiogenin-induced angiogenesis. Proc. Natl. Acad. Sci. U.S.A. 95, 9791-9795. https://doi.org/10.1073/pnas.95.17.9791
-
Miyazaki, T., Honda, K. and Ohata, H. (2007) Requirement of
$Ca^{2+}$ influx-and phosphatidylinositol 3-kinase-mediated m-calpain activity for shear stress-induced endothelial cell polarity. Am. J. Physiol.-Cell Ph. 293, C1216-1225. https://doi.org/10.1152/ajpcell.00083.2007 - Ibaragi, S., Yoshioka, N., Li, S., Hu, M., Hirukawa, S., Sadow, P. and Hu, G.-F. (2009) Neamine inhibits prostate cancer growth by suppressing angiogenin-mediated rRNA transcription. Clin. Cancer Res. 15, 1981-1988. https://doi.org/10.1158/1078-0432.CCR-08-2593
Cited by
- Electrochemistry at the Edge of Reason: Chalcogen-Based Redox Systems in Biochemistry and Drug Design vol.227, pp.5, 2013, https://doi.org/10.1524/zpch.2013.0321