Abstract
We explored the interpretation of the well-accepted correlation between the apparent peak maximum position shift and extent of molecular interactions, like hydrogen bonding and dipole-dipole interactions, based on the overlapped multiple band model. The simulation of two overlapped Lorentzian bands was carried out to interpret how the maximum position of a composite peak relates to the relative contributions of two species representing the different levels of molecular interactions, i.e., free (or very weekly bound) vs. strongly bound. To demonstrate the validity of our interpretation of the origin of the peak position shift, the temperaturedependent IR spectra of ethylene glycol were also analyzed. It was found through the analysis of simulated and experimental spectra that the apparent peak shift in certain case can be safely interpreted as the measure of the strength of hydrogen bonding. The result of this study gives a new insight to interpret molecular interactions probed by vibrational spectroscopy.