DOI QR코드

DOI QR Code

Dust Around T Tauri Stars

  • Suh, Kyung-Won (Department of Astronomy and Space Science, Chungbuk National University) ;
  • Kwon, Young-Joo (Department of Astronomy and Space Science, Chungbuk National University)
  • Received : 2011.09.29
  • Accepted : 2011.11.04
  • Published : 2011.12.15

Abstract

To reproduce the multiple broad peaks and the fine spectral features in the spectral energy distributions (SEDs) of T Tauri stars, we model dust around T Tauri stars using a radiative transfer model for multiple isothermal circumstellar dust shells. We calculate the radiative transfer model SEDs for multiple dust shells using the opacity functions for various dust grains at different temperatures. For six sample stars, we compare the model results with the observed SEDs including the Spitzer spectral data. We present model parameters for the best fit model SEDs that would be helpful to understand the overall structure of dust envelopes around classical T Tauri stars. We find that at least three separate dust components are required to reproduce the observed SEDs. For all the sample stars, an innermost hot (250-550 K) dust component of amorphous (silicate and carbon) and crystalline (corundum for all objects and forsterite for some objects) grains is needed. Crystalline forsterite grains can reproduce many fine spectral features of the sample stars. We find that crystalline forsterite grains exist in cold regions (80-100 K) as well as in hot inner shells.

Keywords

References

  1. Bertout C, T Tauri stars: wild as dust, ARA&A, 27, 351-395 (1989). http://dx.doi.org/10.1146/annurev.aa.27.090189.002031
  2. Bertout C, Robichon N, Arenou, F, Revisiting Hipparcos data for pre-main sequence stars, A&A, 352, 574-586 (1999).
  3. Bohren CF, Huffman DR, Absorption and scattering of light by small particles (Wiley, New York, 1983).
  4. Bouwman J, Henning Th, Hillenbrand LA, Meyer MR, Pascucci I, et al., The formation and evolution of planetary systems: grain growth and chemical processing of dust in T Tauri systems, ApJ, 683, 479-498 (2008). http://dx.doi.org/10.1086/587793
  5. Bouwman J, Lawson WA, Dominik C, Feigelson ED, Henning Th, et al., Binarity as a key factor in protoplanetary disk evolution: Spitzer disk census of the $\eta$ chamaeleontis cluster, ApJ, 653, L57-L60 (2006). http://dx.doi.org/10.1086/510365
  6. Cambresy L, Copet E, Epchtein N, de Batz B, Borsenberger J, et al., New young stellar object candidates in the Chamaeleon I molecular cloud discovered by DENIS, A&A, 338, 977-987 (1998).
  7. Carrez P, Demyk K, Leroux H, Cordier P, Jones AP, et al., Low-temperature crystallization of $MgSiO_{3}$ glasses under electron irradiation: possible implications for silicate dust evolution in circumstellar environments, M&PS, 37, 1615-1622 (2002). http://dx.doi.org/10.1111/j.1945-5100.2002.tb00815.x
  8. Dullemond CP, Apai D, Walch S, Crystalline silicates as a probe of disk formation history, ApJ, 640, L67-L70 (2006). http://dx.doi.org/10.1086/503100
  9. Fabian D, Jager C, Henning Th, Dorschner J, Mutschke H, Steps toward interstellar silicate mineralogy. V. Thermal evolution of amorphous magnesium silicates and silica, A&A, 364, 282-292 (2000).
  10. Fazio GG, Hora JL, Allen LE, Ashby MLN, Barmby P, et al., The infrared array camera (IRAC) for the Spitzer space telescope, ApJS, 154, 10-17 (2004). http://dx.doi.org/10.1086/422843
  11. Gautier TN III, Rebull LM, Stapelfeldt KR, Mainzer A, Spitzer-MIPS observations of the $\eta$ Chamaeleontis young association, ApJ, 683, 813-821 (2008). http://dx.doi.org/10.1086/589708.
  12. Ivezic A, Elitzur M, Self-similarity and scaling behaviour of infrared emission from radiatively heated dust. I. Theory, MNRAS, 287, 799-811 (1997). https://doi.org/10.1093/mnras/287.4.799
  13. Jager C, Molster FJ, Dorschner J, Henning Th, Mutschke H, et al., Steps toward interstellar silicate mineralogy. IV. The crystalline revolution, A&A, 339, 904-916 (1998).
  14. Juhasz A, Bouwman J, Henning Th, Acke B, van den Ancker ME, et al., Dust Evolution in Protoplanetary Disks Around Herbig Ae/Be Stars- the Spitzer View, ApJ, 721, 431-455 (2010). http://dx.doi.org/10.1088/0004-637x/ 721/1/431
  15. Kimura Y, Miyazaki Y, Kumamoto A, Saito M, Kaito C, Characteristic low-temperature crystallization of amorphous Mg-bearing silicate grains under electron irradiation, ApJ, 680, L89-L92 (2008). http://dx.doi.org/10.1086/589828
  16. Lawson WA, Crause LA, Mamajek EE, Feigelson ED, The $\eta$ Chamaeleontis cluster: photometric study of the ROSAT-detected weak-lined T Tauri stars, MNRAS, 321, 57-66 (2001). http://dx.doi.org/10.1046/j.1365-8711.2001. 03967.x
  17. Lawson WA, Feigelson ED, Huenemoerder DP, An improved HR diagram for Chamaeleon I pre-main-sequence stars, MNRAS, 280, 1071-1088 (1996).
  18. Luhman KL, Allen LE, Allen PR, Gutermuth RA, Hartmann L, et al., The disk population of the Chamaeleon I star-forming region, ApJ, 675, 1375-1406 (2008). http://dx.doi.org/10.1086/527347
  19. Lyo A, Lawson WA, Bessell MS, The spectroscopic characteristics of intermediate aged pre-main-sequence stars: the $\eta$ Chamaeleontis cluster, MNRAS, 355, 363-373 (2004). http://dx.doi.org/10.1111/j.1365-2966.2004.08318.x
  20. Makarov VV, Signatures of dynamical star formation in the ophiuchus association of pre-main-sequence stars, ApJ, 670, 1225-1233 (2007). http://dx.doi.org/10.1086/522669
  21. Mamajek EE, Lawson WA, Feigelson ED, The $\eta$ Chamaeleontis cluster: a remarkable new nearby young open cluster, ApJ, 516, L77-L80 (1999). https://doi.org/10.1086/312005
  22. Megeath ST, Hartmann L, Luhman KL, Fazi GG, Spitzer/IRAC photometry of the $\eta$ Chameleontis association, ApJ, 634, L113-L116 (2005). http://dx.doi.org/10.1086/498503
  23. Miroshnichenko A, Ivezic Z, Vinkovic D, Elitzur M, Dust emission from Herbig Ae/Be stars: evidence for disks and envelopes, ApJ, 520, L115-L118 (1999). https://doi.org/10.1086/312159
  24. Mundt R, Bastian U, UBV photometry of young emission-line objects, A&AS, 39, 245-250 (1980).
  25. Murakami H, Baba H, Barthel P, Clements DL, Cohen M, et al., The infrared astronomical mission AKARI, PASJ, 59, S369-S376 (2007).
  26. Olofsson J, Augereau JC, van Dishoeck EF, Merín B, Lahuis F, et al., C2D Spitzer-IRS spectra of disks around T Tauri stars IV. Crystalline silicates, A&A, 507, 327-345 (2009). http://dx.doi.org/10.1051/0004-6361/200912062
  27. Olofsson J, Augereau JC, van Dishoeck EF, Merin B, Grosso N, et al., C2D Spitzer-IRS spectra of disks around T Tauri stars. V. Spectral decomposition A&A, 520, A39 (2010). http://dx.doi.org/10.1051/0004-6361/200913909
  28. Shevchenko VS, Herbst W, The search for rotational modulation of T Tauri stars in the ophiuchus dark cloud, AJ, 116, 1419-1431 (1998). http://dx.doi.org/10.1086/300496
  29. Sicilia-Aguilar A, Bouwman J, Juhasz A, Henning Th, Roccatagliata V, et al., The long-lived disks in the η Chamaeleontis cluster, ApJ, 701, 1188-1203 (2009). http://dx.doi.org/10.1088/0004-637x/701/2/1188
  30. Simon M, Ghez AM, Leinert Ch, Cassar L, Chen WP, et al., A lunar occultation and direct imaging survey of multiplicity in the Ophiuchus and Taurus starforming regions, ApJ, 443, 625-637 (1995). http://dx.doi.org/10.1086/175554
  31. Spangler C, Sargent AI, Silverstone MD, Becklin EE, Zuckerma B, Dusty debris around solar-type stars: temporal disk evolution, ApJ, 555, 932-944 (2001). http://dx.doi.org/10.1086/321490
  32. Suh KW, Dust around Herbig AE/Be stars, JKAS, 44, 13-21 (2011). http://dx.doi.org/10.5303/jkas.2011.44.1.13
  33. Suh KW, Optical properties of the carbon dust grains in the envelopes around AGB stars, MNRAS, 315, 740-750 (2000). http://dx.doi.org/10.1046/j.1365-8711.2000.03482.x
  34. Suh KW, Optical properties of the silicate dust grains in the envelopes around AGB stars, MNRAS, 304, 389-405 (1999). http://dx.doi.org/10.1046/j.1365-8711.1999.02317.x
  35. Tamanai A, Mutschke H, Blum J, Posch Th, Koike C, et al., Morphological effects on IR band profiles. Experimental spectroscopic analysis with application to observed spectra of oxygen-rich AGB stars, A&A, 501, 251-267 (2009). http://dx.doi.org/10.1051/0004-6361/200911614
  36. Towers IN, Robinson G, A model for multiple isothermal circumstellar dust shells, PhyS, 80, 015901 (2009). http://dx.doi.org/10.1088/0031-8949/80/01/015901
  37. Whitney BA, Wood K, Bjorkman JE, Wolff MJ, Two-dimensional radiative transfer in protostellar envelopes. I. Effects of geometry on Class I sources, ApJ, 591, 1049-1063 (2003). http://dx.doi.org/10.1086/375415
  38. Zacharias N, Monet DG, Levine SE, Urban SE, Gaume R, et al., The Naval Observatory Merged Astrometric Dataset (NOMAD), in American Astronomical Society 205th Meeting, San Diego, CA, 9-13 Jan 2004, #48.15.

Cited by

  1. Mid-infrared spectroscopy of components in chondrites: Search for processed materials in young Solar Systems and comets vol.231, 2014, https://doi.org/10.1016/j.icarus.2013.12.018
  2. Dust Disks Around Young Stellar Objects vol.33, pp.2, 2016, https://doi.org/10.5140/JASS.2016.33.2.119