임상가를 위한 특집 2 - 티타늄 임플란트 표면처리에서의 나노테크놀로지

Nanotechnology in the Surface Treatment of Titanium Implant.

  • 오승한 (원광대학교 치과대학 치과생체재료학교실)
  • Oh, Seung-Han (Department of Dental Biomaterials, College of Dentistry, Wonkwang University)
  • 발행 : 2010.02.01

초록

아직까지 나노관련 기술이 티타늄 임플란트에 직접적으로 사용되는 부분이 상당히 미약하다. 하지만, 수직으로 정렬된 구조를 가지는 티타니아 나노튜브는 생체 내 대부분의 임플란트 재료로 사용되는 티타늄의 차세대 개발에 있어서 가장 중요한 영향을 미칠 것이다. 본문에 설명되어 있는 내용들 뿐 만이라, 티타니아 나노튜브는 파골세포의 골 흡수성 방지, 줄기세포의 특정 성체세포로의 분화, 연골세포의 재분화, 간세포를 이용한 생물 반응기(bio-reactor) 개발 등 생체재료의 여러 분야에서 많이 연구되고 있다. 특히, 줄기세포에 관한 연구는 차세대 임플란트 개발에 있어서 가장 중요한 연구 분야 중의 하나로서, 골을 형성하는 조골세포와 골을 파괴하는 피골세포 모두 줄기세포 로부터 만들어진다는 것을 유념해야 할 것이다. 만약, 티타니아 나노튜브의 독특한 나노구조를 이용하여 줄기세포의 조골세포로의 직접 분회를 제어하는 기술이 개발되어 상업화된다면, 이 기술을 기반으로 하여 현 재까지 개발된 모든 표면 증착 및 코팅 기술을 새롭게 이용하는 차세대 티타늄 임플란트의 개발을 위한 초석이 되리라고 본다.

Tissue engineering has been enhanced by advance in biomaterial nature, surface structure and design. In this paper, I report specifically vertically aligned titania ($TiO_2$) nanotube surface structuring for optimization of titanium implants utilizing nanotechnology. The formation, mechanism, characteristics of titania nanotubes are explained and emerging critical role in tissue engineering and regenerative medicine is reviewed. The main focus of this paper is on the unique 3 dimensional tubular shaped nanostructure of titania and its effects on creating epochal impacts on cell behavior. Particularly, I discuss how different cells cultured on titania nanotube are adhered, proliferated, differentiated and showed phenotypic functionality compared to those cultured on flat titanium. As a matter of fact, the presence of titania nanotube surface structuring on titanium for dental applications had an important effect improving the proliferation and mineralization of osteoblasts in vitro, and enhancing the bone bonding strength with rabbit tibia over conventional titanium implants in vivo. The nano-features of titania nanotubular structure are expected to be advantageous in regulating many positive cell and tissue responses for various tissue engineering and regenerative medicine applications.

키워드

참고문헌

  1. Oh S, Daraio C, Chen LH, Pisanic TR, Finones RR, Jin S. Significantly accelerated osteoblast cell growth on aligned $TiO_2$ nanotubes. J Biomed Mater Res A 2006;78:97.
  2. Brammer KS, Oh S, Gallagher JO, Jin S. Enhanced cellular mobility guided by $TiO_2$ nanotube surfaces. Nano Lett 2008;8:786. https://doi.org/10.1021/nl072572o
  3. Brammer KS, Oh S, Cobb CJ, Bjursten LM, van der Heyde H, Jin S, Improved bone-forming functionality on diameter-controlled $TiO_2$ nanotube surface, Acta Biomaterialia, In Press, Available online 15 May 2009.
  4. Curtis AS, Dalby M, Gadegaard N. Cell signaling arising from nanotopography: implications for nanomedical devices. Nanomed 2006;1:67. https://doi.org/10.2217/17435889.1.1.67
  5. Dalby MJ, Andar A, Nag A, Affrossman S, Tare R, McFarlane S, Oreffo RO. Genomic expression of mesenchymal stem cells to altered nanoscale topographies. J R Soc Interface 2008.
  6. Dalby MJ RM, Johnstone H, et al. In vitro reaction of endothelial cells to polymer demixed nanotopography. Biomaterials 2001;23:2945.
  7. Gallagher JO, McGhee KF, Wilkinson CD, Riehle MO. Interaction of animal cells with ordered nanotopography. IEEE Trans Nanobioscience 2002;1:24. https://doi.org/10.1109/TNB.2002.806918
  8. Park J, Bauer S, von der Mark K, Schmuki P. Nanosize and vitality: $TiO_2$ nanotube diameter directs cell fate. Nano Lett 2007;7:1686 https://doi.org/10.1021/nl070678d
  9. Dalby MJ. Nanostructured surfaces: cell engineering and cell biology. Nanomed 2009;4:247-8. https://doi.org/10.2217/nnm.09.1
  10. Dalby MJ, McCloy D, Robertson M, et al. Osteoprogenitor response to semi-ordered and random nanotopographies. Biomaterials 2006; 27:2980-7. https://doi.org/10.1016/j.biomaterials.2006.01.010
  11. Dalby MJ, Pasqui D, Affrossman S. Cell response to nano-islands produced by polymer demixing: a brief review. IEE Proc Nanobiotechnol 2004; 151:53-61. https://doi.org/10.1049/ip-nbt:20040534
  12. Dalby MJ, Gadegaard N, Curtis AS, Oreffo RO. Nanotopographical control of human osteoprogenitor differentiation. Curr Stem Cell Res Ther 2007;2:129-38. https://doi.org/10.2174/157488807780599220
  13. Dalby MJ, Gadegaard N, Herzyk P, et al. Nanomechanotransduction and interphase nuclear organization influence on genomic control. J Cell Biochem 2007;102:1234-44. https://doi.org/10.1002/jcb.21354
  14. Prakasam HE, Shankar K, Paulose M, Varghese OK, and Grimes CA. A New Benchmark for $TiO_2$ Nanotube Array Growth by Anodization. J. Phys. Chem. C, 2007. 111: p. 7235-7241. https://doi.org/10.1021/jp070273h
  15. Prakash S, Tuli GD, Basu SK, and Madan RD. Advanced Inorganic Chemistry, 2005. 2.
  16. Tao J, Zhao J, Tang C, Kang Y, Li Y. Mechanism study of self-organized $TiO_2$ nanotube arrays by anodization. New Journal of Chemistry 2008.
  17. Oh S, Brammer KS, Cobb CJ, Smith G, and Jin S. (2009) $TiO_2$ nanotubes for enhanced cell and bone growth. In: Karlinsey R.L. (ed) Recent Developments in Advanced Medical and Dental Materials Using Electrochemical Methodologies. ISBN: 978-81-308-0335-7, Research Signpost, 199.
  18. Linder L, Carlsson A, Marsal L, Bjursten LM, Branemark PI. Clinical aspects of osseointegration in joint replacement. A histological study of titanium implants. J Bone Joint Surg Br 1988;70:550.
  19. Pillar RM LJ, Maniatopoulos C. Observation on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Rel Res 1986;208:108.
  20. Satomi K, Akagawa Y, Nikai H, Tsuru H. Bone-implant interface structures after nontapping and tapping insertion of screw-type titanium alloy endosseous implants. J Prosthet Dent 1988;59:339. https://doi.org/10.1016/0022-3913(88)90187-4
  21. Oh SH, Finones RR, Daraio C, Chen LH, Jin S. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 2005;26:4938. https://doi.org/10.1016/j.biomaterials.2005.01.048
  22. Oh SH, The effect of $TiO_2$ nanotubes on the adhesion, proliferation and osteogenic functionality of osteoblasts. J Kor Res Soc Dent Mater 2008;35:297.
  23. Boyan BD, Humbert, T.W,. Dean, D.D., Schwartz, Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 1996;17:137. https://doi.org/10.1016/0142-9612(96)85758-9
  24. Ingber DE. Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci 1993;104:613.
  25. Martinez E, Engel, E., Planell, J.A., Samitier, J. Ann Anat 2009;191:126. https://doi.org/10.1016/j.aanat.2008.05.006
  26. Bjursten LM, Rasmusson, L., Oh, S., Smith, G.C., Brammer, K.S., Jin, S. Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res 2009;88A.
  27. Oh S, Brammer KS, Li YS, Teng D, Engler AJ, Chien S, Jin S. Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2130-5. Epub 2009 Jan 28. https://doi.org/10.1073/pnas.0813200106