한국, 일본 및 중국 지린성 야생콩(Glycine soja Sieb. and Zucc.)의 SSR마커에 의한 유전적 다양성과 유연관계

Genetic diversity and relationships of Korean, Japanese, and Chinese Jilin provincial wild soybeans (Glycine soja Sieb. and Zucc.) based on SSR markers

  • 장성진 (충북대학교 농업생명환경대학) ;
  • 박수정 (충북대학교 농업생명환경대학) ;
  • 박향민 (충북대학교 농업생명환경대학) ;
  • 송항림 (충북대학교 농업생명환경대학) ;
  • 황태영 (농촌진흥청 국립식량과학원) ;
  • 조용구 (충북대학교 농업생명환경대학) ;
  • 유헌호 (연변대학 농학원) ;
  • 우선희 (충북대학교 농업생명환경대학) ;
  • 강정훈 (농촌진흥청 국립농업과학원) ;
  • 김홍식 (충북대학교 농업생명환경대학)
  • Jang, Seong-Jin (College of Agriculture, Life & Environment Sciences, Chungbuk National University) ;
  • Park, Su-Jeong (College of Agriculture, Life & Environment Sciences, Chungbuk National University) ;
  • Piao, Xiang-Min (College of Agriculture, Life & Environment Sciences, Chungbuk National University) ;
  • Song, Hang-Lin (College of Agriculture, Life & Environment Sciences, Chungbuk National University) ;
  • Hwang, Tae-Young (National Institute of Crop Science, RDA) ;
  • Cho, Yong-Gu (College of Agriculture, Life & Environment Sciences, Chungbuk National University) ;
  • Liu, Xian-Hu (Department of Agronomy, College of Agriculture, YanBian University) ;
  • Woo, Sun-Hee (College of Agriculture, Life & Environment Sciences, Chungbuk National University) ;
  • Kang, Jung-Hoon (National Academy of Agricultural Science, RDA) ;
  • Kim, Hong-Sig (College of Agriculture, Life & Environment Sciences, Chungbuk National University)
  • 투고 : 2010.03.13
  • 발행 : 20100300

초록

한국의 농업유전자원센터로부터 분양받은 한국 야생콩, 일본의 Biological Resource Center in Lotus and Glycine, Frontier Science Research Center, University of Miyazaki로부터 분양 받은 일본 야생콩, 그리고 중국 지린성에서 수집되어진 야생콩 의 유전적 다양성과 유연관계를 SSR마커로 분석하여 콩 육종의 유전적 변이 확대를 위한 기초자료로 이용하고자 수행한 연구결과를 요약하면 다음과 같다. 1. 한국 야생콩 67종, 일본 야생콩 71종 및 중국 지린성의 야생콩 46종을 포함한 총 184종을 23개의 SSR마커로 유전적 다양성과 유연관계를 분석한 결과, 총 964개의 대립인자가 확인되었고, 평균 41.9개의 대립인자가 확인되었다. SSR마커별로 대립인자 수는 최소 23개(Satt635)에서 최대 56개(Satt157)까지 확인되었으며, PIC 값의 범위는 0.880~0.968로 평균 0.945이었다. 2. 한국 야생콩은 대립인자의 수는 총 513개이었고 평균 22.3개 이었으며, 일본 야생콩은 대립인자의 수는 총 511개이었고 평균 22.2개이었으며, 중국 지린성 야생콩의 대립인자의 수는 총 312개 이었으며 평균 13.6개이었다. 평균 유전적 다양성(PIC 값)은 한국 야생콩이 0.905, 일본 야생콩이 0.897 및 중국 지린성의 야생콩이 0.850로서 큰 차이가 없었다. 3. 한국, 일본 및 중국 지린성의 야생콩들은 SSR마커를 이용한 유전적 거리에 따른 군집분석에서 3그룹으로 구분되었다. I그룹은 중국 지린성의 야생콩만이 분포하였고, II그룹은 대부분이 일본의 야생콩이 분포하였는데 한국의 야생콩 5종이 포함되었으며, III그룹은 대부분이 한국의 야생콩이 분포하였으며 일본의 야생콩 6종과 중국 지린성의 야생콩 1종이 포함되었다. I그룹은 동일그룹 내에서 다른 군이 형성되지 않았으나, II그룹과 III그룹은 동일그룹 내에서 각각 몇 개의 군으로 분류되었다. 4. SSR마커에 의한 유연관계는 한국과 일본의 야생콩 간의 유전적 거리가 한국과 중국 지린성 및 일본과 중국 지린성의 야생콩 간의 유전적 거리보다 더 가까웠다.

Genetic diversity and relationships within and among Korean, Japanese and Chinese Jilin provincial wild soybeans based on SSR markers were evaluated to enlarge genetic variation in soybean breeding in the future. A total of 184 wild soybeans including 67 Korean, 71 Japanese and 46 Chinese Jilin provincial wild soybeans were analyzed to evaluate genetic diversity and relationships based on 23 SSR markers. Korean and Japanese wild soybeans were obtained from National Agrobiodiversity Center, Korea, and Biological Resource Center in Lotus and Glycine, Frontier Science Research Center, University of Miyazaki, Japan, respectively. Chinese wild soybeans were collected from Jilin province, China. Twenty three SSR markers generated a total of 964 alleles with an average of 41.9 alleles per marker. Number of alleles ranged from 23 (Satt635) to 56 (Satt157). Genetic diversity (PIC value) of 184 wild soybeans ranged from 0.880 to 0.968 with an average of 0.945. Number of alleles for Korean, Japanese and Chinese Jilin provincial wild soybeans was 513 with an average of 22.3, 511 with an average of 22.2, and 312 with an average of 13.6 per marker, respectively. PIC value for Korean, Japanese and Chinese Jilin provincial wild soybeans was similar with an average of 0.905, 0.897, and 0.850, respectively. Cluster analysis based on genetic distances estimated by SSR markers classified wild soybeans into 3 clusters. Cluster I included only Chinese Jilin provincial wild soybeans. Cluster II included most of Japanese wild soybeans including 5 Korean wild soybeans. Cluster III included most of Korean wild soybeans including 6 Japanese and 1 Chinese Jilin provincial wild soybeans. Cluster I was not subclassified, but cluster II and III were subclassified into various groups. Genetic distance evaluated by SSR markers between Korean and Japanese wild soybeans was closer than that of between Korean and Chinese Jilin provincial, and between Japanese and Chinese Jilin provincial wild soybeans.

키워드

과제정보

연구 과제 주관 기관 : 충북대학교

참고문헌

  1. Baranek M, Kadlec M, Raddova J, Vachun M, Pidra M. 2001. Evaluation of RAPD data by popgene 32 software. Proceedings of 9th International Conference of Horticulture. Vol. 2. PP:465-472.
  2. Cho YH, Yoon MS, Lee JR, Beak HJ, Kim CY, Kim TS, Cho EG, Lee HB. 2006. Diversity and geographical relationships by SSR marker in subgenus Soja originated from Korea. Korean J. Crop Sci. 51(3):239-247.
  3. Cho YG, Ishii T, Temnykh SM, Chen X, Lipovich L, McCouch SR, Park WD, Ayres N, Cartinhou S. 2000. Diversity of microsatellites derived from genomic libraries and genebank sequences in rice (Oryza sativa L.). Theor. Appl. Genet. 100:249-257. https://doi.org/10.1007/s001220050033
  4. Deshimau M, Yoshimi S, Shio Terada S. 2004. Multigene family for Bowman-Birk proteinase inhibitors of wild and soybeans: the presence of two BBI-A genes and pseudo-genes. Biosci. Biotechnol. Biochem. 68(6):1279-1286. https://doi.org/10.1271/bbb.68.1279
  5. Frankham R. 1996. Relationship of genetic variation to population size in wildlife. Conservation Biology 10:1500-1508. https://doi.org/10.1046/j.1523-1739.1996.10061500.x
  6. Fu YB, Peterson GW, Morrison MJ. 2007. Genetic diversity of Canadian soybean cultivars and exotic germplasm revealed by simple sequence repeal markers. Crop Sci. 47:1947-1954. https://doi.org/10.2135/cropsci2006.12.0843
  7. Hwang TY, Nakamoto Y, Kono I, Enoki H, Funatsuki H, Kitamura K, Ishimoto M. 2008. Genetic diversity of cultivated and wild soybeans including Japanese elite cultivars as revealed by length polymorphism of SSR markers. Breeding Sci. 58:315-323. https://doi.org/10.1270/jsbbs.58.315
  8. Hymowilz, T. 1970. On the domestication of the soybean, Econ. Bot. 24:408-421. https://doi.org/10.1007/BF02860745
  9. Hymowilz, T, Kaizunla N. 1981. Soybean seed protein electrophoresis profiles from 15 asian countries or regions: Hypotheses on paths of dissemination of soybean in china. Econ. Bot. 35:10-23. https://doi.org/10.1007/BF02859210
  10. Jang SJ, Park SJ, Park KH, Song HL, Cho YG, Jong SK, Kang JH, Kim HS 2009. Genetic diversity and identification of Korean elite soybean cultivars including certified cultivars based on SSR markers. Korean J. Crop Sci. 54(2):231-240.
  11. Kanamaru K, Wang S, Abe J, Yamada T, Kitamura K. 2006. Identification and characteristization of wild soybean (Glycine soja Sieb. et Zecc.) strains with high lutein content. Breeding Sci. 56:231-234. https://doi.org/10.1270/jsbbs.56.231
  12. Kim KC, Park EH. 2005. Variation of protein. oil contents and fatty acid composition of Korean wild soybean (Glycine soja Sieb. & Zucc.) seeds. Korean J. Crop Sci. 50(S):118-122.
  13. Kim SH, Chung JW, Moon JK, Woo SH, Cho YG, Jong SK, Kim HS. 2006. Discrimination of Korean soybean cultivars by SSR markers. Korean J. Crop Sci. 51(7):1-11.
  14. Kuroda Y, Tomooka N, Kaga A, Vaughan DA. 2009. Genetic diversity of wild soybean (Glycine soja Sieb. et Zucc.) and Japanese cultivated soybeans [G. max (L.) Merr.] based on microsatellite (SSR) analysis and the selection of a core collection. Genet. Resour. Crop Evol. 56:1045-1055. https://doi.org/10.1007/s10722-009-9425-3
  15. Lee JD, Yu JK, Hwang YH, Blake S, So YS, Lce GJ, Nguyen HT, Shannon JG. 2008. Genetic diversity of wild soybean(Glycine soja Sieb. and Zucc.) accessions from South Korea and other countries. Crop Sci. 48:606-616. https://doi.org/10.2135/cropsci2007.05.0257
  16. Nei M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U.S.A. 70(12):3321-3323. https://doi.org/10.1073/pnas.70.12.3321
  17. Nichols DM, Lianzheng W, Pei Y, Glover KD, Diers BW. 2007. Variability among Chinese Glycine soja and Chinese and North American soybean genotypes. Crop Sci. 47:1289-1298. https://doi.org/10.2135/cropsci2006.09.0605
  18. Liu K, Muse S. 2004. Power maker: New genetic data analysis software. Version 2.7(Http://www.powermaker.net).
  19. Rohlf FJ. 2002. NTSVS-pc. Numerical taxonomy system. V. 2.1. Exeter publishing Ltd., Setauket NY.
  20. Ujiie A, Yamada T, Fujimoto K, Endo V, Kitamura K. 2005. Identification of soybean varieties with high ${\alpha}-tocopherol$ content. Breeding Sci. 55:13-125.
  21. Wang D, Arelli PR, Shoemaker RC, Diers BW. 2001. Loci underlying resistance to race 3 of soybean cyst nematode in Glycine soja plant introduction 468916. Theor. Appl. Genet. 103:561-566. https://doi.org/10.1007/PL00002910
  22. Wang KJ, Takahata V. 2007. A preliminary comparative evaluation of diversity between Chinese and Japanese wild soybean (Glycine soja) germplasm pools using SSR markers. Genet. Resour. Crop Evol., 54:157-165. https://doi.org/10.1007/s10722-005-2641-6
  23. Wang L, Guan R, Zhangxiong L, Chang R, Qiu L. 2006. Genetic diversity of Chinese cultivated soybean revealed by SSR markers. Crop Sci. 46:1032-1038. https://doi.org/10.2135/cropsci2005.0051
  24. Yoon MS, Back HJ, Kang JH, Lee SY, Gwag JG, Park NK. 2001. Relationship of species in subgenus Soja based on Simple Sequence Repeat(SSR) DNA marker. Korean J. Breed. 33(1):15-21.
  25. Yoon MS, Lee JR, Beak HJ, Cho GT, Kim CY, Cho YH, Kim TS, Cho EG. 2007. SSR profiling and its variation in soybean germplasm. Korean J. Crop Sci. 52(1):81-88.