DOI QR코드

DOI QR Code

The Effect of Grain Size and Film Thickness on the Thermal Expansion Coefficient of Copper and Silver Thin Films

구리와 은 박막의 열팽창계수에 미치는 결정립 크기와 박막 두께의 영향

  • Hwang, Seulgi (Department of Material Science & Engineering, Chonnam National University) ;
  • Kim, Youngman (Department of Material Science & Engineering, Chonnam National University)
  • 황슬기 (전남대학교 신소재공학부) ;
  • 김영만 (전남대학교 신소재공학부)
  • Received : 2010.06.27
  • Published : 2010.12.25

Abstract

Thin films have been used in a large variety of technological applications such as solar cells, optical memories, photolithographic masks, protective coatings, and electronic contacts. If thin films experience frequent temperature changes, thermal stresses are generated due to the difference in the coefficient of thermal expansion between the film and substrate. Thermal stresses may lead to damage or deformation in thin film used in electronic devices and micro-machined structures. Thus, knowledge of the thermomechanical properties of thin films, such as the coefficient of thermal expansion, is an important issue in determining the stability and reliability of the thin film devices. In this study, thermal cycling of Cu and Ag thin films with various microstructures was employed to assess the coefficient of thermal expansion of the films. The result revealed that the coefficient of thermal expansion (CTE) of the Cu and Ag thin films increased with an increasing grain size. However, the effect of film thickness on the CTE did not show a remarkable difference.

Keywords

References

  1. Y. Zoo, D. Adams, J. W. Mayer, and T. L. Alford, Thin Solid Films 513, 170 (2006). https://doi.org/10.1016/j.tsf.2006.02.005
  2. Youngman Kim and Sung-Ho Choo, Thin Solid Films 394, 284 (2001).
  3. Jae Wook Shin and Eric Chason, Phys. Rev. Lett. 103, 056102 (2009). https://doi.org/10.1103/PhysRevLett.103.056102
  4. R. C. Cammarata, T. M. Trimble, and D. J. Srolovitz, J. Mater. Res. 15, 2468 (2000). https://doi.org/10.1557/JMR.2000.0354
  5. F. Spaepen, Acta Mater. 48, 31 (2000). https://doi.org/10.1016/S1359-6454(99)00286-4
  6. C. V. Thompson and R. Carel, J. Mech. Phys. Solids 44(5-6), 657-673 (1996). https://doi.org/10.1016/0022-5096(96)00022-1
  7. M. Cho, S. Hwang, S. Ryu, and Y. Kim, J. Kor. Inst. Met. & Mater. 47, 466 (2009).
  8. M. M. de Lima, Jr., R. G. Lacerda, J. Vilcarromero, and F. C. Marques, J. Appl. Phys. 86, 4936 (1999). https://doi.org/10.1063/1.371463
  9. A. Mezin, Sulf. Coat. Tech. 200, 5259 (2006). https://doi.org/10.1016/j.surfcoat.2005.06.018
  10. Naoki Ono, Kounosuke Kitamura, Ken Nakajima, and Yasushi Shimanuki, Jpn. J. Appl. Phys. 39, 368 (2000). https://doi.org/10.1143/JJAP.39.368
  11. W. D. Callister, Jr., Materials Science and Engineering an Introduction, seventh ed., John Wiley & Sons (2007).
  12. M. Ohring, Materials Science of Thin Films, second ed., Academic Press (2002).
  13. G. D. Barrera, J. A. O'Bruno, T. H. K. Barron, and N. L. Allan, J. Phys.:Condens. Matter 17, R217-R252 (2005). https://doi.org/10.1088/0953-8984/17/4/R03
  14. S. H. Hong, K. S. Kim, Y.-M. Kim, J.-H. Hahn, C.-S. Lee, and J.-H. Park, Compos. Sci. Technol 65, 1401 (2005). https://doi.org/10.1016/j.compscitech.2004.12.010
  15. X. Deng, M. Koopman, N. Chawla, and K. K. Chawla, Mater. Sci. Eng. A364, 240 (2004).