DOI QR코드

DOI QR Code

A Study of the Development of a High-Strength Al-Zn Based Alloy for Die Casting I

고강도 Al-Zn기 다이캐스팅 합금개발에 관한 연구 I

  • Shin, Sang-Soo (Green Technology Center, Korea Institute of Industrial Technology) ;
  • Yeom, Gil-Yong (ECO-Diecast Korea Co., Ltd.) ;
  • Kim, Eok-Soo (Green Technology Center, Korea Institute of Industrial Technology) ;
  • Lim, Kyung-Mook (Green Technology Center, Korea Institute of Industrial Technology)
  • 신상수 (한국생산기술연구원 친환경청정기술센터) ;
  • 염길용 (에코 다이캐스트 코리아) ;
  • 김억수 (한국생산기술연구원 친환경청정기술센터) ;
  • 임경묵 (한국생산기술연구원 친환경청정기술센터)
  • Received : 2010.07.02
  • Published : 2010.10.22

Abstract

Al-Zn based alloys are the most common types of wrought Al alloys. Although Al-Zn alloys have high strength, they cannot be applied to a conventional casting process. In this study, Al-Zn-based alloys applicable to a die casting process were developed successfully. The developed Al-45 wt% Zn-based alloys showed a fine equiaxed grain structure and high strength. A fine equiaxed grain having an average size of $25{\mu}m$ was obtained by the die casting process. The UTS and elongation of the new alloy are 475 MPa and ~3.5%, respectively. In addition, we elucidate the effect of a Zn addition on variations in different mechanical properties and the microstructure characteristics of (Al96.3-xZnxCu3Si0.4Fe0.3) x=20, 30, 40, and 45 wt% alloys fabricated by a die casting process.

Keywords

References

  1. N. Ryum, Z. Metallk. 66, 338 (1975).
  2. J. K. Park and A. J. Ardell, Metall. Trans. 14, 1957 (1983). https://doi.org/10.1007/BF02662363
  3. H. Loffler, I. Kovacs, and Lendvai, J. Mater. Sci. 18, 2215 (1983). https://doi.org/10.1007/BF00541825
  4. D. Kent, G. B. Schaffer, and J. Drennan, Mater. Sci. Eng. A. 405, 65 (2005). https://doi.org/10.1016/j.msea.2005.05.104
  5. K. D. Woo, J. S. Lee, and S. W. Kim, Met. Mater. Int. 5, 363 (1999).
  6. Metals Handbook, Vol. 2-Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International 10th Ed. (1990).
  7. Temel Savakan and Yasin Alemdag, Wear 268, 565 (2010). https://doi.org/10.1016/j.wear.2009.10.002
  8. Bai Pucun, Hou Xiaohu, Zhang Xiuyun, Zhao Chunwang, and Xing Yongming, Mater. Sci. Eng. A 508, 23 (2009). https://doi.org/10.1016/j.msea.2008.12.010
  9. G. B. winkelman, Z. W. Chen, D. H. Jhon, and M. Z. Jahedi, J. Mater. Sci. Lett. 39, 519 (2004). https://doi.org/10.1023/B:JMSC.0000011507.38552.19
  10. T. Savas-kan, O. Torul, and H. Cuvalci, Metall. Congr. 98, 784 (1988).
  11. Y. P. Ren, H. Ding, and S. M. Hao, J. Mater. Sci. Lett. 22, 433 (2003). https://doi.org/10.1023/A:1022955526885
  12. H. Chen, X. Xin, D.Y. Dong, and Y. P. Ren, Acta. Meta. Sin 17, 269 (2004).
  13. J. Das, K. B. Kim, F. Baier, W. Loser, A. Gebert, and J. Eckert, J. Alloy. Compd. 434, 28 (2007). https://doi.org/10.1016/j.jallcom.2006.08.163
  14. L. C. Zhang, J. Das, H. B. Lu, C. Duhamel, M. Calin, and J. Eckert, Scripta Mater. 57, 101 (2007). https://doi.org/10.1016/j.scriptamat.2007.03.031
  15. Yan Shu-qing, Xie Jing-pei, and Liu Zhong-xia, J. Hot Working Technology 37, 10 (2008).
  16. LI An-ming and Wang Hai-rui, J. Foundry 57, 608 (2008).
  17. Y. Kimura, T. Mishima, S. Umekawa, and T. Suzuki, J. Mater. Sci. 19, 3107 (1984). https://doi.org/10.1007/BF01026990