DOI QR코드

DOI QR Code

스퍼터링 공정변수 변화에 따른 NiO 박막의 특성 평가

Characterization of NiO Films with the Process Variables in the RF-Sputtering

  • 정국채 (한국기계연구원 부설 재료연구소 나노기능분말연구그룹) ;
  • 김영국 (한국기계연구원 부설 재료연구소 나노기능분말연구그룹) ;
  • 최철진 (한국기계연구원 부설 재료연구소 나노기능분말연구그룹)
  • 투고 : 2009.10.29
  • 발행 : 2010.04.15

초록

NiO thin films were deposited by radio frequency magnetron sputtering on glass substrates. The processing variables of the oxygen content, sputtering power, and pressure were varied to investigate the electrical properties and surface morphology of NiO films. It was found that the resistivity of NiO films at $1.22{\times}10^2{\Omega}cm$ (2.5% $O_2$ in Ar gas) was greatly reduced to$ 2.01{\times}10^{-1}$ ${\Omega}cm$ (100% oxygen) under a typical sputtering condition of 6 mTorr and 200 watts. In an effort to observe the resistivity variances, the sputtering power was varied from 80 to 200 watts at 6 mTorr with 100% $O_2$. However, the resistivity of the NiO films changed in the range of $10^{-1}-10^{-2}$ ${\Omega}cm$. The dependence on the sputtering power was therefore found to be weak in this experiment. When the sputtering pressure was changed from 3 to 60 mTorr at 200 watts with 100% $O_2$, the resistivity of the NiO films showed the lowest value of $5.8{\times}10^{-3}$ ${\Omega}cm$ at 3 mTorr, which is close to that of commercial ITO films (${\sim}10^{-4}$ ${\Omega}cm$). As the sputtering pressure increased, the resistivity also increased to 4.67 cm at 60 mTorr. The surface morphology of the NiO films was also checked by Atomic Force Microscopy. It was found that the RMS surface roughness values ranged from 0.6 to 1.5 nm and thtthe dependence on the sputtering parameters was weak.

키워드

과제정보

연구 과제 주관 기관 : 한국기계연구원

참고문헌

  1. S. Coe, W. K. Woo, M. Bawedi, and V. Bulovic, Nature 420, 800 (2002) https://doi.org/10.1038/nature01217
  2. L. A. Kim, P. Anikeeva, S. Coe-Sulivan, J. Steckel, M. Bawendi, and V. Bulovic, Nano Lett. 8, 4513 (2008) https://doi.org/10.1021/nl8025218
  3. W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee, Adv. Mater. 21, 1690 (2009) https://doi.org/10.1002/adma.200801908
  4. P. Fenter et al., Chem. Phys. Lett. 277,521 (1997) https://doi.org/10.1016/S0009-2614(97)00941-X
  5. Y Sato and H. Kanai, Mol. Cryst. Liq. Cryst. 252, 435 (1994)
  6. F. Papadimitrakopoulos and X. M. Zhang, Synth. Mat. 85, 1221 (1997) https://doi.org/10.1016/S0379-6779(97)80214-7
  7. J. Caruge, J. Halpert, V. Bulovic, and M. Bawendi, Nano Lett. 6, 2991 (2006) https://doi.org/10.1021/nl0623208
  8. Uri Banin, Nature Photonics 2, 209 (2008) https://doi.org/10.1038/nphoton.2008.40
  9. J. Caruge, J. Halpert, V. Wood, V. Bulovic, and M. Bawendi, Nature Photonics 2, 247 (2008) https://doi.org/10.1038/nphoton.2008.34
  10. H. Sato, T. Minami, S. Takata, and T. Yamada, Thin Solid Films 236, 27 (1993) https://doi.org/10.1016/0040-6090(93)90636-4
  11. O. Kohmoto, H. nakagawa, F. Ono, and A. Chayahara, J. Magn. Magn. Mater. 226-230,1627 (2001) https://doi.org/10.1016/S0304-8853(00)01042-8
  12. S. Nandy, B. Saha, M. Mitra, and K. Chattopadhyay, J. Mater. Sci. 42, 5766 (2007) https://doi.org/10.1007/s10853-006-1153-x
  13. W. Estrada, A. Andersson, and C. Granqvist, J. Appl. Phys. 64 3678 (1998)
  14. D. Wruck, A. Dixon, M. Rubin, and S. Bogy, J. Vac. Sci. Technol. 19, 2170 (1991)
  15. J. Scarminio, W. Estrada, A. Andersson, A. Gorenstein, and F. Decker, J. Electrochem. Soc. 139, 1236 (1992) https://doi.org/10.1149/1.2069389
  16. C. Otterman, A. Temmink, and K. Bange, Thin Solid Films 193/194, 409 (1990)
  17. T. Seike and J. Nagai, Sol. Energy Mater. 22, 107 (1991) https://doi.org/10.1016/0165-1633(91)90010-I
  18. L. Wang, Z. Zhang, and Y. Cao, J. Ceram. Soc. Jpn. 101, 227 (1993) https://doi.org/10.2109/jcersj.101.227
  19. L. Cattin, B. Reguig, A. Khelil, M. Morsli, K. Benchouk, and J. Bernede, Appl. Surf Sci. 254, 5814 (2008) https://doi.org/10.1016/j.apsusc.2008.03.071
  20. J. N. Shin, Y. J. Cho, and D. K. Choi, J. Kor. Inst. Met. & Mater. 47,38 (2009)