DOI QR코드

DOI QR Code

Crystal Structures and Electrochemical Properties of LiNi1-xMgxO2 (0≤x≤0.1) for Cathode Materials of Secondary Lithium Batteries

리튬 이차전지의 양극 활물질 LiNi1-xMgxO2 (0≤x≤0.1)의 결정구조 및 전기화학적 특성

  • Kim, Deok-Hyeong (School of Materials Science and Engineering, Kyungpook National University) ;
  • Jeong, Yeon Uk (School of Materials Science and Engineering, Kyungpook National University)
  • 김덕형 (경북대학교 신소재공학부) ;
  • 정연욱 (경북대학교 신소재공학부)
  • Received : 2009.08.31
  • Published : 2010.03.20

Abstract

$LiNi_{1-x}Mg_xO_2$(x=0, 0.025, 0.05, 0.075, 0.1) samples were synthesized by the solid-state reaction method. The crystal structure was analyzed by X-ray powder diffraction and Rietveld refinement. $LiNi_{1-x}Mg_xO_2$samples give single phases of hexagonal layered structures with a space group of R-3m. The calculated cation-anion distances and angles from the Rietveld refinement were changed with Mg contents in $LiNi_{1-x}Mg_xO_2$. The thicknesses of $NiO_2$ slabs were increased and the distances between the $NiO_2$ slabs were decreased with the increase in Mg contents in the samples. The electrical conductivities of sintered $LiNi_{1-x}Mg_xO_2$ samples were around $10^{-2}$ S/cm at room temperature. The electrochemical performances of $LiNi_{1-x}Mg_xO_2$were evaluated by coin cell test. Compared to $LiNiO_2$, $LiNi_{0.95}Mg_{0.05}O_2$ exhibited improved high-rate capability and cyclability due to the well-ordered layered structure by doping of Mg ion.

Keywords

References

  1. K. Mitzushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, Mater. Res. Bull. 15, 783 (1980) https://doi.org/10.1016/0025-5408(80)90012-4
  2. M. Yoshio, H. Tanaka, K. Tomonaga, and H. Noguchi, J. Power Sources 40, 347 (1992) https://doi.org/10.1016/0378-7753(92)80023-5
  3. S. G. Woo, H. Ryu, H. R. Lee, J. S. Kim, and I. S. Kim, J. Kor. Inst. Met. & Mater. 37, 878 (1999)
  4. J. Morales, C. P$\'{e}$rez-Vicente, and J. L. Tirado, Mat. Res. Bull. 25, 623 (1990) https://doi.org/10.1016/0025-5408(90)90028-Z
  5. H. Arai, S. Okada, H. Ohtsuka, M. Ichimura, and J. Yamaki, Solid State Ionics 80, 261 (1995) https://doi.org/10.1016/0167-2738(95)00144-U
  6. A. Rougier, P. Gravereau, and C. Delmas, J. Electrochem. Soc. 143, 1168 (1996) https://doi.org/10.1149/1.1836614
  7. L. Croguennec, C. Pouillerie, and C. Delmas, J. Electrochem. Soc. 147, 1314 (2000) https://doi.org/10.1149/1.1393356
  8. T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, and H. Komori, Electrochim. Acta 38, 1159 (1993) https://doi.org/10.1016/0013-4686(93)80046-3
  9. C. Delmas and I. Saadoune, Solid State Ionics 53-56, 370 (1992) https://doi.org/10.1016/0167-2738(92)90402-B
  10. E. Zhecheva and R. Stoyanova, Solid State Ionics 66, 143 (1993) https://doi.org/10.1016/0167-2738(93)90037-4
  11. M. Guilmard, A. Rougier, M. Grune, L. Croguennec, and C. Delmas, J. Power Sources 115, 305 (2003) https://doi.org/10.1016/S0378-7753(03)00012-0
  12. C. C. Chang, J. Y. Kim, and P. N. Kumta, J. Electrochem. Soc. 147, 1722 (2000) https://doi.org/10.1149/1.1393424
  13. N. Yabuuchi and T. Ohzuku, J. Power Sources 119-121, 171 (2003) https://doi.org/10.1016/S0378-7753(03)00173-3
  14. H. J. Kim, Y. U. Jeong, J. H. Lee, and J. J. Kim, J. Power Sources 159, 233 (2006) https://doi.org/10.1016/j.jpowsour.2006.04.030
  15. T. Ohzuku, A. Ueda, and M. Nagayama, J. Electrochem. Soc. 140, 1862 (1993) https://doi.org/10.1149/1.2220730