DOI QR코드

DOI QR Code

Specialty Fiber Coupler: Fabrications and Applications

  • Lee, Byeong-Ha (School of Information and Communications, Gwangju Institute of Science and Technology) ;
  • Eom, Joo-Beom (School of Information and Communications, Gwangju Institute of Science and Technology) ;
  • Park, Kwan-Seob (School of Information and Communications, Gwangju Institute of Science and Technology) ;
  • Park, Seong-Jun (School of Information and Communications, Gwangju Institute of Science and Technology) ;
  • Ju, Myeong-Jin (School of Information and Communications, Gwangju Institute of Science and Technology)
  • Received : 2010.10.15
  • Accepted : 2010.11.19
  • Published : 2010.12.25

Abstract

We review the research on specialty fiber couplers with emphasis placed on the characteristics that make them attractive for biomedical imaging, optical communications, and sensing applications. The fabrication of fiber couplers has been carried out with, in addition to conventional single mode fiber, various specialty fibers such as photonic crystal fiber, double clad fiber, and hole-assisted fiber with a Ge-doped core. For the fiber coupler fabrication, the side polishing and the fused biconical tapered methods have been developed. These specialty fiber couplers have been applied to optical coherence tomography, fluorescence spectroscopy, fiber sensors, and optical communication systems. This review aims to provide a detailed statement on the recent progress and novel applications of specialty fiber couplers.

Keywords

References

  1. M. N. Mcandrich, R. J. Orazi, and H. R. Marlin, “Polarization independent narrow channel wavelength division multiplexing fiber couplers for $1.55 {\mu}m$,” IEEE J. Lightwave Technol. 9, 442-447 (1991). https://doi.org/10.1109/50.76657
  2. R. Gafsi, P. Lecoy, and A. Malki, “Stress optical fiber sensor using light coupling between two laterally fused multimode optical fibers,” Appl. Opt. 37, 3417-3425 (1998). https://doi.org/10.1364/AO.37.003417
  3. H. Y. Bao and T. Y. Wang, “An enhanced fiber-optic temperature sensor for coupler visibility monitoring,” J. Optoelectron. Laser 16, 1413-1416 (2005).
  4. K. T. Kim and K. H. Park, “Fiber-optic temperature sensor based on single mode fused fiber coupler,” J. Opt. Soc. Korea 12, 152-156 (2008). https://doi.org/10.3807/JOSK.2008.12.3.152
  5. R. Chen, Y. Liao, and G. Zheng, “A novel acoustic emission fiber optic sensor based on a single mode optical fiber coupler,” Chin. J. Lasers 10, 195-198 (2001).
  6. K. T. Kim, D. G. Kim, W. K. Hyun, K. B. Hong, K. Im, S. J. Baik, D. K. Kim, and H. Y. Choi, “Side-coupled asymmetric plastic optical fiber coupler for optical sensor systems,” J. Opt. Soc. Korea 12, 255-261 (2008). https://doi.org/10.3807/JOSK.2008.12.4.255
  7. J. I. Youn, “Evaluation of morphological changes in degenerative cartilage using 3-D optical coherence tomography,” J. Opt. Soc. Korea 12, 98-102 (2008). https://doi.org/10.3807/JOSK.2008.12.2.98
  8. J. H. Oh, H. Lee, and J. H. Kim, “Detection of magnetic nanoparticles in tissue using magneto-motive DP-OCT,” J. Opt. Soc. Korea 11, 26-33 (2007). https://doi.org/10.3807/JOSK.2007.11.1.026
  9. H. Kim, J. C. Kim, U. C. Paek, and B. H. Lee, “Tunable photonic crystal fiber coupler based on a side-polishing technique,” Opt. Lett. 29, 1194-1196 (2004). https://doi.org/10.1364/OL.29.001194
  10. B. H. Lee, J. B. Eom, J. C. Kim, D. S. Moon, and U. C. Paek, “Photonic crystal fiber coupler,” Opt. Lett. 27, 812-814 (2002). https://doi.org/10.1364/OL.27.000812
  11. J. B. Eom, H. R. Lim, K. S. Park, and B. H. Lee, “Wavelength-division-multiplexing fiber coupler based on bendinginsensitive holey optical fiber,” Opt. Lett. 35, 2726-2728 (2010). https://doi.org/10.1364/OL.35.002726
  12. L. Wang, H. Y. Choi, Y. Jung, B. H. Lee, and K.-T. Kim, “Optical probe based on double-clad optical fiber for fluorescence spectroscopy,” Opt. Express 15, 17681-17689 (2007). https://doi.org/10.1364/OE.15.017681
  13. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961 (1997). https://doi.org/10.1364/OL.22.000961
  14. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Groupvelocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662 (1998). https://doi.org/10.1364/OL.23.001662
  15. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347 (1998). https://doi.org/10.1049/el:19980965
  16. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395-1397 (1999). https://doi.org/10.1364/OL.24.001395
  17. E. S. Choi, J. Na, and B. H. Lee, “Fiber-based high resolution OCT system halogen light source,” Proc. SPIE 5316, 454-462 (2004). https://doi.org/10.1117/12.531317
  18. J. B. Eom, J. H. Park, and B. H. Lee, “$2{\times}2$ photonic crystal fiber splitter based on silica-based planar lightwave circuits,” Opt. Lett. 34, 3737-3739 (2009). https://doi.org/10.1364/OL.34.003737
  19. H. S. Jang, K. N. Park, and K. S. Lee, “Characterization of tunable photonic crystal fiber directional couplers,” Appl. Opt. 46, 3688-3693 (2007). https://doi.org/10.1364/AO.46.003688
  20. S. Y. Ryu, H. Y. Choi, J. H. Na, E. Choi, G.-H. Yang, and B. H. Lee, “Optical coherence tomography implemented by photonic crystal fiber,” Optical and Quantum Electronics 37, 1191-1198 (2005). https://doi.org/10.1007/s11082-005-4191-8
  21. S. Y. Ryu, H. Y. Choi, J. H. Na, E. Choi, I. Tomov, Z. Chen, and B. H. Lee, “Ultrawideband photonic crystal fiber coupler for multiband optical imaging system,” Appl. Opt. 10, 1980-1990 (2010). https://doi.org/10.1364/AO.10.001980
  22. L. Zenteno, “High-power double-clad fiber lasers,” IEEE J. Lightwave Technol. 11, 1435-1446 (1993). https://doi.org/10.1109/50.241933
  23. B. H. Lee and J. Nishii, “Cladding-surrounding interface insensitive long-period grating,” Electron. Lett. 34, 1129-1130 (1998). https://doi.org/10.1049/el:19980788
  24. L. Wang, H. Y. Choi, Y. Jung, B. H. Lee, and K. T. Kim, “Optical probe based on double-clad optical fiber for fluorescence spectroscopy,” Opt. Express 15, 17681-17689 (2007). https://doi.org/10.1364/OE.15.017681
  25. S. Y. Ryu, H. Y. Choi, M. J. Ju, J. Na, W. J. Choi, and B. H. Lee, “The development of double clad fiber and double clad fiber coupler for fiber based biomedical imaging systems,” J. Opt. Soc. Korea 13, 310-315 (2009). https://doi.org/10.3807/JOSK.2009.13.3.310
  26. C. A. Patil, N. Bosschaart, M. D. Keller, T. G. VanLeeuwen, and A. Mahadevan-Jansen, “Combined Raman spectroscopy and optical coherence tomography device for tissue characterization,” Opt. Lett. 33, 1135-1137 (2008). https://doi.org/10.1364/OL.33.001135
  27. A. R. Tumlinson, L. P. Hariri, U. Utzinger, and J. K. Barton, “Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement,” Appl. Opt. 43, 113-121 (2004). https://doi.org/10.1364/AO.43.000113
  28. S. Y. Ryu, H. Y. Choi, J. Na, E. S. Choi, and B. H. Lee, “Combined system of optical coherence tomography and fluorescence spectroscopy based on double-cladding fiber,” Opt. Lett. 33, 2347-2349 (2008). https://doi.org/10.1364/OL.33.002347
  29. S. Y. Ryu, H. Y. Choi, J. Na, W. J. Choi, and B. H. Lee, “Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography,” Appl. Opt. 47, 1510-1516 (2008). https://doi.org/10.1364/AO.47.001510
  30. C.-H. Kim, J.-K. Bae, K.-I. Lee, and S.-B. Lee, “Performance evaluation of a tunable dispersion compensator based on strain-chirped fiber Bragg grating in a 40 Gb/s transmission link,” J. Opt. Soc. Korea 12, 244-248 (2008). https://doi.org/10.3807/JOSK.2008.12.4.244

Cited by

  1. A hybrid fiber-optic photoluminescence measurement system and its application in InGaN/GaN light emitting diode epi-wafer morphology studies vol.20, pp.17, 2012, https://doi.org/10.1364/OE.20.019535
  2. Simultaneous Measurements of Refractive Index and Thickness by Spectral-Domain Low Coherence Interferometry Having Dual Sample Probes vol.23, pp.15, 2011, https://doi.org/10.1109/LPT.2011.2155642
  3. Interferometric Fiber Optic Sensors vol.12, pp.12, 2012, https://doi.org/10.3390/s120302467
  4. Side-polished-fiber based optical coupler assisted with a fused nano silica film vol.54, pp.7, 2015, https://doi.org/10.1364/AO.54.001598
  5. Ultrabroadband Polarization-Insensitive Coupler Based on Dual-Core Photonic Crystal Fiber vol.9, pp.1, 2017, https://doi.org/10.1109/JPHOT.2016.2644864
  6. A fiber-based single-unit dual-mode optical Imaging system: Swept source optical coherence tomography and fluorescence spectroscopy vol.285, pp.9, 2012, https://doi.org/10.1016/j.optcom.2011.12.098
  7. Fiber-based optical coherence tomography for biomedical imaging, sensing, and precision measurements vol.19, pp.6, 2013, https://doi.org/10.1016/j.yofte.2013.07.011
  8. Experiment research on optical properties of all microstructure optical fiber laser vol.91, 2017, https://doi.org/10.1016/j.optlastec.2016.11.027
  9. Light-guided localization within tissue using biocompatible surgical suture fiber as an optical waveguide vol.19, pp.9, 2014, https://doi.org/10.1117/1.JBO.19.9.090503