DOI QR코드

DOI QR Code

Effects of Electrolyte Concentration and Relative Cathode Electrode Area Sizes in Titania Film Formation by Micro-Arc Oxidation

  • Received : 2010.07.13
  • Accepted : 2010.08.25
  • Published : 2010.08.01

Abstract

MAO (micro-arc oxidation) is an eco-friendly convenient and effective technology to deposit high-quality oxide coatings on the surfaces of Ti, Al, Mg and their alloys. The roles of the electrolyte concentration and relative cathode electrode area sizes in the grown oxide film during titanium MAO were investigated. The higher the concentration of the electrolyte, the lower the $R_{total}A$ value. The oxide film produced by the lower concentration of the electrolyte is thinner and less uniform than the film by the higher concentration, which is thick and porous. The cathode area size must be bigger than the anode area size in order to minimize the voltage drop across the cathode. The ratio of the cathode area size to the anode area size must be bigger than 8. Otherwise, the cathode will be another source for voltage drop, which is detrimental to and slows down the oxide growth.

Keywords

References

  1. A. Aladjem, J. Mater. Sci., 8, 688 (1973). https://doi.org/10.1007/BF00561225
  2. J. Pouilleau, D. Devilliers, F. Garrido, S. Durand-Vidal, and E. Mahe, Mater. Sci. Eng. B, 47, 235 (1997). https://doi.org/10.1016/S0921-5107(97)00043-3
  3. P. Kurze, W. Krysmann, and H. G. Schneider, Cryst. Res. Technol., 21, 1603 (1986). https://doi.org/10.1002/crat.2170211224
  4. S. D. Brown, G. P. Wirtz, and W. M. Kriven, Mater. Sci. Monogr. High Perf. Ceram. Films Coat., 67, 221 (1991).
  5. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, Surf. Coat. Technol., 122, 73 (1999).
  6. S. D. Brown, K. J. Kuna, and T. B. Van, J. Am. Ceram. Soc., 54, 384 (1971). https://doi.org/10.1111/j.1151-2916.1971.tb12328.x
  7. T. Haneda, S. Ito, C. Yoshimura, and S. I. Ishida, Zairyo Gijutsu, 11, 274 (1993).
  8. V. S. Rudnev, T. P. Yarovaya, D. L. Boguta, L. N. Tyrina, P. M. Nedozorov, and P. S. Gordienko, J. Electroanal. Chem., 497, 150 (2001). https://doi.org/10.1016/S0022-0728(00)00483-6
  9. X. Y. Liu, K. C. Paul, and C. X. Ding, Mater. Sci. Eng. R. 47, 49 (2004). https://doi.org/10.1016/j.mser.2004.11.001
  10. Y. M. Wang, D. C. Jia, L. X. Guo, T. Q. Lei, and B. L. Jiang, Maler. Chem. Phys., 90, 128 (2005).
  11. L. H. Li, Y. M. Kong, and H. W. Kim, Biomaterials, 25, 2867 (2004). https://doi.org/10.1016/j.biomaterials.2003.09.048
  12. X. L. Zhu, K. H. Kim, and Y. S. Jeong, Biomaterials, 22, 2199 (2001). https://doi.org/10.1016/S0142-9612(00)00394-X
  13. X. L. Zhu, L. J. Ong, S. Y. Kim, and K. H. Kim, J. Biomed. Mater. Res., 60, 333 (2002). https://doi.org/10.1002/jbm.10105
  14. W. H. Song, Y. K. Jun, Y. Han, and S. H. Hong, Biomaterials, 25, 3341 (2004). https://doi.org/10.1016/j.biomaterials.2003.09.103
  15. G. Sundarajan and L. R. Krishna, Surf. Coat. Technol., 167, 269 (2003). https://doi.org/10.1016/S0257-8972(02)00918-0
  16. W. Xue, Z. Deng, R. Chen, and T. Zhang, Thin Solid Films, 372, 114 (2000). https://doi.org/10.1016/S0040-6090(00)01026-9
  17. K. J. Park and J. H. Lee, Corros. Sci. Tech., 8. 227 (2009).