DOI QR코드

DOI QR Code

A Method for Real Time Monitoring of Oxide Thickness in Plasma Electrolytic Oxidation of Titanium

  • Yoo, Kwon-Jong (Graduate School of NID Fusion Technology, Seoul National University of Technology) ;
  • Lee, Yong-K. (Graduate School of NID Fusion Technology, Seoul National University of Technology) ;
  • Lee, Kang-Soo (Xerochem Inc.)
  • Received : 2009.12.29
  • Accepted : 2010.02.10
  • Published : 2010.02.01

Abstract

During PEO (plasma-electrolytic-oxidation) treatment of titanium, the relationship between the thickness of oxide film and the measured electrical information was investigated. A simple real time monitoring method based on the electrical information being gathered during PEO treatment is proposed. The proposed method utilizes the current flowing from a high frequency voltage source to calculate the resistance of an oxide film, which is converted into the thickness of an oxide film. This monitoring method can be implemented in PEO system in which an oxide film is grown by constant or pulsed voltage/current sources.

Keywords

References

  1. T. Kitsugi, T. Nakamura, and M. Oka, J. Biomed. Mater. Res., 32, 149 (1996). https://doi.org/10.1002/(SICI)1097-4636(199610)32:2<149::AID-JBM1>3.0.CO;2-T
  2. Y. X. Leng, J. Y. Chen, and Z. M. Zeng, Thin. Solid. Films., 377, 573 (2000 ). https://doi.org/10.1016/S0040-6090(00)01306-7
  3. Y. Han, S.H. Hong, and K.W. Xu, Surf. Coat. Technol., 154, 314 (2002). https://doi.org/10.1016/S0257-8972(02)00036-1
  4. S. V. Gnedenkov. P. S. Gordienko, O. A. Khrisanfova, T. M. Scorcbogatova, and S. L. Sinebrukhov, J. Mater. Sci., 37, 2263 (2002). https://doi.org/10.1023/A:1015317316363
  5. J. C. Keller, C. M. Stanford, J. P. Wightman, R. A. Draughn, and R. Zaharias, J. Biomed. Mater. Res., 28, 939 (1994). https://doi.org/10.1002/jbm.820280813
  6. J. Pouilleau, D. Devilliers, F. Garrido, S. Durand-Vidal, and E. Mahe, Mater. Sci. Eng., B47, 235 (1997).
  7. A. Bloycc, P. Y. Qi, H. Dong, and T. Bell, Surf. Coat. Technol., 111, 172 (1999). https://doi.org/10.1016/S0257-8972(98)00728-2
  8. T. B. Van, S. D. Brown, and G. P. Wirtz., Am. Ceram. Soc. Bull., 56, 563 (1977 ).
  9. A. L. Yerokhin, V. V. Lyubimov, and R. V. Ashitkov, Ceram. Int., 24, 1 (1998). https://doi.org/10.1016/S0272-8842(96)00067-3
  10. X. Nie, A. Leyland, H. W. Song, A. L. Yerokhin, S. J. Dewey, and A. Matthews, Surf. Coat. Technol., 116, 1055 (1999). https://doi.org/10.1016/S0257-8972(99)00089-4
  11. W. Xue, Z. Deng, R. Chen, and T. Zhang, Thin Solid Films., 372, 114 (2000). https://doi.org/10.1016/S0040-6090(00)01026-9
  12. V. S. Rudnev, I. V. Lukiyanchuk, D. L. Boguta, V. V. Kon'shin, A. S. Rudnev, and P. S. Gordienko, Russ. Prot. Met., 38, 191 (2002). https://doi.org/10.1023/A:1014981519572
  13. S. V. Gnedenkov, O. A. Khrisanfova, A. G. Zavidnaya. S. L. Sinebryukhov, V. V. Kon'shin, S. B. Bulanova, and P. S. Gordienko, Russ. J. Appl. Phys., 76, 23 (2003).
  14. I. Han, J. H. Choi, B. H. Zhao, H. K. Baik, and I. S. Lee, Cure. Appl. Phys., 7S1, 23 (2007).
  15. G.-R Gu, Z. He, Y.-C. Tao, Y.-A. Li, J.-J.Li, H. Yin, W.-Q. Li, and Y.-N. Zhao, Vaccum, 70, 17 (2003). https://doi.org/10.1016/S0042-207X(02)00618-8
  16. Y. M. Wang, D. C. Jia, L. X. Guo, T. Q. Lei, and B. L. Jiang. Mater. Chem. Phys., 90, 128 (2005). https://doi.org/10.1016/j.matchemphys.2004.10.025