DOI QR코드

DOI QR Code

Migratory defect of mesencephalic dopaminergic neurons in developing reeler mice

  • Kang, Woo-Young (Department of Anatomy, School of Medicine, Ajou University) ;
  • Kim, Sung-Soo (Department of Anatomy, School of Medicine, Ajou University) ;
  • Cho, Sung-Kuk (Department of Anatomy, School of Medicine, Ajou University) ;
  • Kim, So-Yeon (Department of Anatomy, School of Medicine, Ajou University) ;
  • SuhKim, Hae-Young (Department of Anatomy, School of Medicine, Ajou University) ;
  • Lee, Young-Don (Department of Anatomy, School of Medicine, Ajou University)
  • 투고 : 2010.07.31
  • 심사 : 2010.09.14
  • 발행 : 2010.09.30

초록

Reelin, an extracellular glycoprotein has an important role in the proper migration and positioning of neurons during brain development. Lack of reelin causes not only disorganized lamination of the cerebral and cerebellar cortex but also malpositioning of mesencephalic dopaminergic (mDA) neurons. However, the accurate role of reelin in the migration and positioning of mDA neurons is not fully elucidated. In this study, reelin-deficient reeler mice exhibited a significant loss of mDA neurons in the substantia nigra pars compacta (SNc) and a severe alteration of cell distribution in the retrorubal field (RRF). This abnormality was also found in Dab1-deficinet, yotari mice. Stereological analysis revealed that total number of mDA neurons was not changed compared to wild type, suggesting that the loss of mDA neurons in reeler may not be due to the neurogenesis of mDA neurons. We also found that formation of PSA-NCAM-positive tangential nerve fibers rather than radial glial fibers was greatly reduced in the early developmental stage (E14.5) of reeler. These findings provide direct evidence that the alteration in distribution pattern of mDA neurons in the reeler mesencephalon mainly results from the defect of the lateral migration using tangential fibers as a scaffold.

키워드

과제정보

연구 과제번호 : GRRC project

연구 과제 주관 기관 : Gyeonggi Provincial Government

참고문헌

  1. Ballif BA, Arnaud L, Arthur WT, Guris D, Imamoto A, Cooper JA. (2004). Activation of a Dab1/CrkL/C3G/Rap1 pathway in reelin-stimulated neurons. Curr Biol 14: 606-610 https://doi.org/10.1016/j.cub.2004.03.038
  2. Bjorklund A, Lindvall O. (1984) Dopamine-containing systems in the CNS. In Bjorklund A, Hokfelt T, eds. Handbook of Chemical Neuroanatomy, Vol. 2. Amsterdam, Elsevier, 55-121
  3. Britanova O, Alifragis P, Junek S, Jones K, Gruss P, Tarabykin V. (2006). A novel mode of tangential migration of cortical projection neurons. Dev Biol 298: 299-311 https://doi.org/10.1016/j.ydbio.2006.06.040
  4. Curran T, D'Arcangelo G. (1998). Role of reelin in the control of brain development. Brain Res Brain Res Rev 26: 285-294 https://doi.org/10.1016/S0165-0173(97)00035-0
  5. D'Arcangelo G, Homayouni R, Keshvara L, Rice DS, Sheldon M, Curran T. (1999). Reelin is a ligand for lipoprotein receptors. Neuron 24: 471-479 https://doi.org/10.1016/S0896-6273(00)80860-0
  6. D'Arcangelo G, Miao GG, Curran T. (1996). Detection of the reelin breakpoint in reeler mice. Brain Res Mol Brain Res 39: 234-236 https://doi.org/10.1016/0169-328X(96)00046-0
  7. Deller T, Drakew A, Frotscher M. (1999). Different primary target cells are important for fiber lamination in the fascia dentata: a lesson from reeler mutant mice. Exp Neurol 156: 239-253 https://doi.org/10.1006/exnr.1999.7020
  8. Dulabon L, Olson EC, Taglienti MG, et al. (2000). Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27: 33-44 https://doi.org/10.1016/S0896-6273(00)00007-6
  9. Feng L, Hatten ME, Heintz N. (1994). Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12: 895-908 https://doi.org/10.1016/0896-6273(94)90341-7
  10. Forster E, Jossin Y, Zhao S, Chai X, Frotscher M, Goffinet AM. (2006). Recent progress in understanding the role of Reelin in radial neuronal migration, with specific emphasis on the dentate gyrus. Eur J Neurosci 23: 901-909 https://doi.org/10.1111/j.1460-9568.2006.04612.x
  11. Gerfen CR. (1992). The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu Rev Neurosci 15: 285-320 https://doi.org/10.1146/annurev.ne.15.030192.001441
  12. German DC, Manaye KF. (1993). Midbrain dopaminergic neurons (nuclei A8, A9, and A10): three-dimensional reconstruction in the rat. J Comp Neurol 331: 297-309 https://doi.org/10.1002/cne.903310302
  13. Gilmore EC, Herrup K. (2000). Cortical development: receiving reelin. Curr Biol 10: R162-166 https://doi.org/10.1016/S0960-9822(00)00332-8
  14. Goffinet AM. (1983). The embryonic development of the inferior olivary complex in normal and reeler (rlORL) mutant mice. J Comp Neurol 219: 10-24 https://doi.org/10.1002/cne.902190103
  15. Hack I, Bancila M, Loulier K, Carroll P, Cremer H. (2002). Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis. Nat Neurosci 5: 939-945 https://doi.org/10.1038/nn923
  16. Hartfuss E, Forster E, Bock HH, et al. (2003). Reelin signaling directly affects radial glia morphology and biochemical maturation. Development 130: 4597-4609 https://doi.org/10.1242/dev.00654
  17. Hartfuss E, Galli R, Heins N, Gotz M. (2001). Characterization of CNS precursor subtypes and radial glia. Dev Biol 229: 15-30 https://doi.org/10.1006/dbio.2000.9962
  18. Hokfelt T, Martensson R, Bjorklund A, Kleinau S, Goldstein M. (1984). Distributional maps of tyrosine-hydroxylase-immunoreactive neurons in the rat brain. In Bjorklund A, Hokfelt T, eds. Handbook of Chemical Neuroanatomy, Vol. 2. Amsterdam, Elsevier, 277-379
  19. Hu Z, Cooper M, Crockett DP, Zhou R. (2004). Differentiation of the midbrain dopaminergic pathways during mouse development. J Comp Neurol 476: 301-311 https://doi.org/10.1002/cne.20230
  20. Hunter-Schaedle KE. (1997). Radial glial cell development and transformation are disturbed in reeler forebrain. J Neurobiol 33: 459-472 https://doi.org/10.1002/(SICI)1097-4695(199710)33:4<459::AID-NEU9>3.0.CO;2-9
  21. Katsuyama Y, Terashima T. (2009). Developmental anatomy of reeler mutant mouse. Dev Growth Differ 51: 271-286 https://doi.org/10.1111/j.1440-169X.2009.01102.x
  22. Kawano H, Ohyama K, Kawamura K, Nagatsu I. (1995). Migration of dopaminergic neurons in the embryonic mesencephalon of mice. Brain Res Dev Brain Res 86: 101-113 https://doi.org/10.1016/0165-3806(95)00018-9
  23. Keilani S, Sugaya K. (2008). Reelin induces a radial glial phenotype in human neural progenitor cells by activation of Notch-1. BMC Dev Biol 8: 69 https://doi.org/10.1186/1471-213X-8-69
  24. Kojima T, Nakajima K, Mikoshiba K. (2000). The disabled 1 gene is disrupted by a replacement with L1 fragment in yotari mice. Brain Res Mol Brain Res 75: 121-127 https://doi.org/10.1016/S0169-328X(99)00313-7
  25. Kwon IS, Cho SK, Kim MJ, et al. (2009). Expression of disabled 1 suppresses astroglial differentiation in neural stem cells. Mol Cell Neurosci 40: 50-61 https://doi.org/10.1016/j.mcn.2008.08.012
  26. Magdaleno S, Keshvara L, Curran T. (2002). Rescue of ataxia and preplate splitting by ectopic expression of Reelin in reeler mice. Neuron 33: 573-586 https://doi.org/10.1016/S0896-6273(02)00582-2
  27. Marin F, Herrero MT, Vyas S, Puelles L. (2005). Ontogeny of tyrosine hydroxylase mRNA expression in mid- and forebrain: neuromeric pattern and novel positive regions. Dev Dyn 234: 709-717 https://doi.org/10.1002/dvdy.20467
  28. Nair-Roberts RG, Chatelain-Badie SD, Benson E, White-Cooper H, Bolam JP, Ungless MA. (2008). Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience 152: 1024-1031 https://doi.org/10.1016/j.neuroscience.2008.01.046
  29. Nishikawa S, Goto S, Hamasaki T, Ogawa M, Ushio Y. (1999). Transient and compartmental expression of the reeler gene product reelin in the developing rat striatum. Brain Res 850: 244-248 https://doi.org/10.1016/S0006-8993(99)02136-8
  30. Nishikawa S, Goto S, Yamada K, Hamasaki T, Ushio Y. (2003). Lack of Reelin causes malpositioning of nigral dopaminergic neurons: evidence from comparison of normal and Reln(rl) mutant mice. J Comp Neurol 461: 166-173 https://doi.org/10.1002/cne.10610
  31. Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR. (2002). Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 22: 3161-3173
  32. Ohkubo N, Lee YD, Morishima A, et al. (2002). Apolipoprotein E and Reelin ligands modulate tau phosphorylation through an apolipoprotein E receptor/disabled-1/glycogen synthase kinase-3beta cascade. FASEB J 17: 295-297
  33. Ohyama K, Kawano H, Asou H, et al. (1998). Coordinate expression of L1 and 6B4 proteoglycan/phosphacan is correlated with the migration of mesencephalic dopaminergic neurons in mice. Brain Res Dev Brain Res 107: 219-226 https://doi.org/10.1016/S0165-3806(97)00220-4
  34. Paxinos G, Franklin KBJ. (2001) The mouse brain in stereotaxic coordinates. 2nd ed. San Diego, Academic Press
  35. Prakash N, Wurst W. (2006). Development of dopaminergic neurons in the mammalian brain. Cell Mol Life Sci 63: 187-206 https://doi.org/10.1007/s00018-005-5387-6
  36. Pollard SM, Conti L. (2007). Investigating radial glia in vitro. Prog Neurobiol 83: 53-67 https://doi.org/10.1016/j.pneurobio.2007.02.008
  37. Rakic S, Yanagawa Y, Obata K, Faux C, Parnavelas JG, Nikolic M. (2009). Cortical interneurons require p35/Cdk5 for their migration and laminar organization. Cereb Cortex 19: 1857-1869 https://doi.org/10.1093/cercor/bhn213
  38. Rice DS, Curran T. (2001). Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci 24: 1005-1039 https://doi.org/10.1146/annurev.neuro.24.1.1005
  39. Rice DS, Sheldon M, D'Arcangelo G, Nakajima K, Goldowitz D, Curran T. (1998). Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development 125: 3719-3729
  40. Shults CW, Hashimoto R, Brady RM, Gage FH. (1990). Dopaminergic cells align along radial glia in the developing mesencephalon of the rat. Neuroscience 38: 427-436 https://doi.org/10.1016/0306-4522(90)90039-7
  41. Super H, Del Rio JA, Martinez A, Perez-Sust P, Soriano E. (2000). Disruption of neuronal migration and radial glia in the developing cerebral cortex following ablation of Cajal-Retzius cells. Cereb Cortex10: 602-613 https://doi.org/10.1093/cercor/10.6.602
  42. Takaoka Y, Setsu T, Misaki K, Yamauchi T, Terashima T. (2005). Expression of reelin in the dorsal cochlear nucleus of the mouse. Brain Res Dev Brain Res 159: 127-134 https://doi.org/10.1016/j.devbrainres.2005.07.014
  43. Terashima T, Kishimoto Y, Ochiishi T. (1994). Musculotopic organization in the motor trigeminal nucleus of the reeler mutant mouse. Brain Res 666: 31-42 https://doi.org/10.1016/0006-8993(94)90279-8
  44. Weiss KH, Johanssen C, Tielsch A, et al. (2003). Malformation of the radial glial scaffold in the dentate gyrus of reeler mice, scrambler mice, and ApoER2/VLDLR-deficient mice. J Comp Neurol 460: 56-65 https://doi.org/10.1002/cne.10644
  45. Won SJ, Kim SH, Xie L, et al. (2006). Reelin-deficient mice show impaired neurogenesis and increased stroke size. Exp Neurol 198: 250-259 https://doi.org/10.1016/j.expneurol.2005.12.008
  46. Yip YP, Rinaman L, Capriotti C, Yip JW. (2003). Ectopic sympathetic preganglionic neurons maintain proper connectivity in the reeler mutant mouse. Neuroscience 118: 439-450 https://doi.org/10.1016/S0306-4522(02)00945-4
  47. Zhao S, Chai X, Frotscher M. (2007). Balance between neurogenesis and gliogenesis in the adult hippocampus: role for reelin. Dev Neurosci 29: 84-90 https://doi.org/10.1159/000096213

피인용 문헌

  1. Reelin and CXCL12 regulate distinct migratory behaviors during the development of the dopaminergic system vol.141, pp.3, 2010, https://doi.org/10.1242/dev.099937
  2. Localization of reelin signaling pathway components in murine midbrain and striatum vol.359, pp.2, 2010, https://doi.org/10.1007/s00441-014-2022-6
  3. How to make a midbrain dopaminergic neuron vol.142, pp.11, 2010, https://doi.org/10.1242/dev.097394
  4. Establishing diversity in the dopaminergic system vol.589, pp.24, 2010, https://doi.org/10.1016/j.febslet.2015.09.016
  5. Reelin Signaling in the Migration of Ventral Brain Stem and Spinal Cord Neurons vol.10, pp.None, 2010, https://doi.org/10.3389/fncel.2016.00062
  6. Neuronal Subset-Specific Migration and Axonal Wiring Mechanisms in the Developing Midbrain Dopamine System vol.11, pp.None, 2010, https://doi.org/10.3389/fnana.2017.00055
  7. EZH2 Influences mdDA Neuronal Differentiation, Maintenance and Survival vol.11, pp.None, 2010, https://doi.org/10.3389/fnmol.2018.00491
  8. Reelin controls the positioning of brainstem serotonergic raphe neurons vol.13, pp.7, 2010, https://doi.org/10.1371/journal.pone.0200268
  9. Correct setup of the substantia nigra requires Reelin-mediated fast, laterally-directed migration of dopaminergic neurons vol.8, pp.None, 2010, https://doi.org/10.7554/elife.41623