DOI QR코드

DOI QR Code

Changes in transcript and protein levels of calbindin D28k, calretinin and parvalbumin, and numbers of neuronal populations expressing these proteins in an ischemia model of rat retina

  • Kim, Shin-Ae (Department of Anatomy, College of Medicine, The Catholic University of Korea) ;
  • Jeon, Ji-Hyun (Department of Anatomy, College of Medicine, The Catholic University of Korea) ;
  • Son, Min-Jeong (Department of Anatomy, College of Medicine, The Catholic University of Korea) ;
  • Cha, Ji-Ook (Department of Anatomy, College of Medicine, The Catholic University of Korea) ;
  • Chun, Myung-Hoon (Department of Anatomy, College of Medicine, The Catholic University of Korea) ;
  • Kim, In-Beom (Department of Anatomy, College of Medicine, The Catholic University of Korea)
  • Received : 2010.08.04
  • Accepted : 2010.09.10
  • Published : 2010.09.30

Abstract

Excessive calcium is thought to be a critical step in various neurodegenerative processes including ischemia. Calbindin D28k (CB), calretinin (CR), and parvalbumin (PV), members of the EF-hand calcium-binding protein family, are thought to play a neuroprotective role in various pathologic conditions by serving as a buffer against excessive calcium. The expression of CB, PV and CR in the ischemic rat retina induced by increasing intraocular pressure was investigated at the transcript and protein levels, by means of the quantitative real-time reverse transcription-polymerase chain reaction, western blot and immunohistochemistry. The transcript and protein levels of CB, which is strongly expressed in the horizontal cells in both normal and affected retinas, were not changed significantly and the number of CB-expressing horizontal cells remained unchanged throughout the experimental period 8 weeks after ischemia/reperfusion injury. At both the transcript and protein levels, however, CR, which is strongly expressed in several types of amacrine, ganglion, and displaced amacrine cells in both normal and affected retinas, was decreased. CR-expressing ganglion cell number was particularly decreased in ischemic retinas. Similar to the CR, PV transcript and protein levels, and PV-expressing AII amacrine cell number were decreased. Interestingly, in ischemic retinas PV was transiently expressed in putative cone bipolar cell types possibly those that connect with AII amacrine cells via gap junctions. These results suggest that these three calcium binding proteins may play different neuroprotective roles in ischemic insult by their ability to buffer calcium in the rat retina.

Keywords

Acknowledgement

Supported by : Korea Research Foundation Grant, Medical Research Center Grant

References

  1. Adachi K, Fujita Y, Morizane C, et al. (1998). Inhibition of NMDA receptors and nitric oxide synthase reduces ischemic injury of the retina. Eur J Pharmacol 350: 53-57 https://doi.org/10.1016/S0014-2999(98)00317-3
  2. Ahmed BY, Toyoshima T, Yamagami S, et al. (1996). A chronological study of the expression of glial fibrillary acidic protein and calbindin-D28 k by reactive astrocytes in the electrically lesioned rat brain. Neurosci Res 26: 271-278 https://doi.org/10.1016/S0168-0102(97)82237-7
  3. Azcona A, Lataste X. (1990). Isradipine in patients with acute ischaemic cerebral infarction. An overview of the ASCLEPIOS Programme. Drugs 40(Suppl 2): 52-57
  4. Baimbridge KG, Celio MR, Rogers JH. (1992). Calcium-binding proteins in the nervous system. Trends Neurosci 15: 303-308 https://doi.org/10.1016/0166-2236(92)90081-I
  5. Batini C, Guegan M, Palestini M, Thomasset M, Vigot R. (1997). Upregulation of Calbindin-D-28k immunoreactivity by excitatory amino acids. Arch Ital Biol 135: 385-397
  6. Batini C, Palestini M, Thomasset M, Vigot R. (1993). Cytoplasmic calcium buffer, calbindin-D28k, is regulated by excitatory amino acids. Neuroreport 4: 927-930 https://doi.org/10.1097/00001756-199307000-00022
  7. Buchi ER. (1992a). Cell death in rat retina after pressure-induced ischaemia-reperfusion insult: electron microscopic study. II. Outer nuclear layer. Jpn J Ophthalmol 36: 62-68
  8. Buchi ER. (1992b). Cell death in the rat retina after a pressure-induced ischaemia-reperfusion insult: an electron microscopic study. I. Ganglion cell layer and inner nuclear layer. Exp Eye Res 55: 605-613 https://doi.org/10.1016/S0014-4835(05)80173-3
  9. Buchi ER, Suivaizdis I, Fu J. (1991). Pressure-induced retinal ischemia in rats: an experimental model for quantitative study. Ophthalmologica 203: 138-147 https://doi.org/10.1159/000310240
  10. Celio MR, Baier W, Scharer L, Gregersen HJ, de Viragh PA, Norman AW. (1990). Monoclonal antibodies directed against the calcium binding protein Calbindin D-28k. Cell Calcium 11: 599-602 https://doi.org/10.1016/0143-4160(90)90014-L
  11. Choi DW. (1996). Ischemia-induced neuronal apoptosis. Curr Opin Neurobiol 6: 667-672 https://doi.org/10.1016/S0959-4388(96)80101-2
  12. Choi DW. (2001). Excitotoxicity, apoptosis and ischemic stroke. J Biochem Mol Biol 34: 8-14
  13. Chun MH, Han SH, Chung JW, Wassle H. (1993). Electron microscopic analysis of the rod pathway of the rat retina. J Comp Neurol 332: 421-432 https://doi.org/10.1002/cne.903320404
  14. Chun MH, Kim IB, Ju WK, et al. (1999). Horizontal cells of the rat retina are resistant to degenerative processes induced by ischemia-reperfusion. Neurosci Lett 260: 125-128 https://doi.org/10.1016/S0304-3940(98)00973-2
  15. D'Orlando C, Celio MR, Schwaller B. (2002). Calretinin and calbindin D-28k, but not parvalbumin protect against glutamate-induced delayed excitotoxicity in transfected N18-RE 105 neuroblastoma-retina hybrid cells. Brain Res 945: 181-190 https://doi.org/10.1016/S0006-8993(02)02753-1
  16. D'Orlando C, Fellay B, Schwaller B, et al. (2001). Calretinin and calbindin D-28k delay the onset of cell death after excitotoxic stimulation in transfected P19 cells. Brain Res 909: 145-158 https://doi.org/10.1016/S0006-8993(01)02671-3
  17. Dijk F, Kamphuis W. (2004). An immunocytochemical study on specific amacrine cell subpopulations in the rat retina after ischemia. Brain Res 1026: 205-217 https://doi.org/10.1016/j.brainres.2004.08.014
  18. Dijk F, van Leeuwen S, Kamphuis W. (2004). Differential effects of ischemia/reperfusion on amacrine cell subtype-specific transcript levels in the rat retina. Brain Res 1026: 194-204 https://doi.org/10.1016/j.brainres.2004.08.034
  19. Fan Y, Shi L, Gu Y, et al. (2007). Pretreatment with PTD-calbindin D 28k alleviates rat brain injury induced by ischemia and reperfusion. J Cereb Blood Flow Metab 27: 719-728 https://doi.org/10.1038/sj.jcbfm.9600373
  20. Flagg-Newton J, Simpson I, Loewenstein WR. (1979). Permeability of the cell-to-cell membrane channels in mammalian cell juncton. Science 205: 404-407 https://doi.org/10.1126/science.377490
  21. Guo Q, Christakos S, Robinson N, Mattson MP. (1998). Calbindin D28k blocks the proapoptotic actions of mutant presenilin 1: reduced oxidative stress and preserved mitochondrial function. Proc Natl Acad Sci U S A 95: 3227-3232 https://doi.org/10.1073/pnas.95.6.3227
  22. Heizmann CW, Braun K. (1992). Changes in Ca(2+)-binding proteins in human neurodegenerative disorders. Trends Neurosci 15: 259-264 https://doi.org/10.1016/0166-2236(92)90067-I
  23. Hwang IK, Kang TC, Lee JC, et al. (2003). Chronological alterations of calbindin D-28k immunoreactivity in the gerbil main olfactory bulb after ischemic insult. Brain Res 971: 250-254 https://doi.org/10.1016/S0006-8993(03)02480-6
  24. Joo CK, Choi JS, Ko HW, et al. (1999). Necrosis and apoptosis after retinal ischemia: involvement of NMDA-mediated excitotoxicity and p53. Invest Ophthalmol Vis Sci 40: 713-720
  25. Kageyama T, Ishikawa A, Tamai M. (2000). Glutamate elevation in rabbit vitreous during transient ischemia-reperfusion. Jpn J Ophthalmol 44: 110-114 https://doi.org/10.1016/S0021-5155(99)00181-1
  26. Kim IB, Kim KY, Joo CK, et al. (1998). Reaction of Müller cells after increased intraocular pressure in the rat retina. Exp Brain Res 121: 419-424 https://doi.org/10.1007/s002210050476
  27. Kim KY, Ju WK, Neufeld AH. (2004). Neuronal susceptibility to damage: comparison of the retinas of young, old and old/caloric restricted rats before and after transient ischemia. Neurobiol Aging 25: 491-500 https://doi.org/10.1016/j.neurobiolaging.2003.07.005
  28. Kim SK, Cho KO, Kim SY. (2008). White matter damage and hippocampal neurodegeneration induced by permanent bilateral occlusion of common carotid artery in the rat: comparison between wistar and sprague-dawley strain. Korean J Physiol Pharmacol 12: 89-94 https://doi.org/10.4196/kjpp.2008.12.3.89
  29. Kristian T, Gido G, Kuroda S, Schutz A, Siesjo BK. (1998). Calcium metabolism of focal and penumbral tissues in rats subjected to transient middle cerebral artery occlusion. Exp Brain Res 120: 503-509 https://doi.org/10.1007/s002210050424
  30. Kwon OJ, Kim JY, Kim SY, Jeon CJ. (2005). Alterations in the localization of calbindin D28K-, calretinin-, and parvalbumin-immunoreactive neurons of rabbit retinal ganglion cell layer from ischemia and reperfusion. Mol Cells 19: 382-390
  31. Lee GA, Lin CH, Jiang HH, Chao HJ, Wu CL, Hsueh CM. (2004). Microglia-derived glial cell line-derived neurotrophic factor could protect Sprague-Dawley rat astrocyte from in vitro ischemia-induced damage. Neurosci Lett 356: 111-114 https://doi.org/10.1016/j.neulet.2003.11.030
  32. Lee JC, Hwang IK, Yoo KY, et al. (2005). Calbindin D-28k is expressed in the microvascular basal lamina in the ventral horn at early time after transient spinal cord ischemia in the rabbit. Brain Res 1047: 123-128 https://doi.org/10.1016/j.brainres.2005.04.020
  33. Lewit-Bentley A, Rety S. (2000). EF-hand calcium-binding proteins. Curr Opin Struct Biol 10: 637-643 https://doi.org/10.1016/S0959-440X(00)00142-1
  34. Li SY, Fu ZJ, Ma H, et al. (2009). Effect of lutein on retinal neurons and oxidative stress in a model of acute retinal ischemia/reperfusion. Invest Ophthalmol Vis Sci 50: 836-843 https://doi.org/10.1167/iovs.08-2310
  35. Limburg M, Hijdra A. (1990). Flunarizine in acute ischemic stroke: a pilot study. Eur Neurol 30: 121-122 https://doi.org/10.1159/000117326
  36. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275
  37. Massey SC, Mills SL. (1996). A calbindin-immunoreactive cone bipolar cell type in the rabbit retina. J Comp Neurol 366: 15-33 https://doi.org/10.1002/(SICI)1096-9861(19960226)366:1<15::AID-CNE2>3.0.CO;2-N
  38. Massey SC, Mills SL. (1999). Gap junctions between AII amacrine cells and calbindin-positive bipolar cells in the rabbit retina. Vis Neurosci 16: 1181-1189 https://doi.org/10.1017/S0952523899166173
  39. Meier TJ, Ho DY, Park TS, Sapolsky RM. (1998). Gene transfer of calbindin D28k cDNA via herpes simplex virus amplicon vector decreases cytoplasmic calcium ion response and enhances neuronal survival following glutamatergic challenge but not following cyanide. J Neurochem 71: 1013-1023
  40. Mojumder DK, Wensel TG, Frishman LJ. (2008). Subcellular compartmentalization of two calcium binding proteins, calretinin and calbindin-28 kDa, in ganglion and amacrine cells of the rat retina. Mol Vis 14: 1600-1613
  41. Park HS, Park SJ, Park SH, Chun MH, Oh SJ. (2008). Shifting of parvalbumin expression in the rat retina in experimentally induced diabetes. Acta Neuropathol 115: 241-248 https://doi.org/10.1007/s00401-007-0314-6
  42. Pasteels B, Rogers J, Blachier F, Pochet R. (1990). Calbindin and calretinin localization in retina from different species. Vis Neurosci 5: 1-16 https://doi.org/10.1017/S0952523800000031
  43. Perlman JI, McCole SM, Pulluru P, Chang CJ, Lam TT, Tso MO. (1996). Disturbances in the distribution of neurotransmitters in the rat retina after ischemia. Curr Eye Res 15: 589-596 https://doi.org/10.3109/02713689609008898
  44. Peterson GL. (1979). Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall. Anal Biochem 100: 201-220 https://doi.org/10.1016/0003-2697(79)90222-7
  45. Polans A, Baehr W, Palczewski K. (1996). Turned on by Ca2+! The physiology and pathology of Ca(2+)-binding proteins in the retina. Trends Neurosci 19: 547-554 https://doi.org/10.1016/S0166-2236(96)10059-X
  46. Rogers JH. (1987). Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. J Cell Biol 105: 1343-1353 https://doi.org/10.1083/jcb.105.3.1343
  47. Rosenbaum D, Zabramski J, Frey J, et al. (1991). Early treatment of ischemic stroke with a calcium antagonist. Stroke 22: 437-441 https://doi.org/10.1161/01.STR.22.4.437
  48. Sanna PP, Keyser KT, Battenberg E, Bloom FE. (1990). Parvalbumin immunoreactivity in the rat retina. Neurosci Lett 118: 136-139 https://doi.org/10.1016/0304-3940(90)90267-D
  49. Schafer BW, Heizmann CW. (1996). The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci 21: 134-140 https://doi.org/10.1016/S0968-0004(96)80167-8
  50. Toyoshima T, Yamagami S, Ahmed BY, et al. (1996). Expression of calbindin-D28K by reactive astrocytes in gerbil hippocampus after ischaemia. Neuroreport 7: 2087-2091 https://doi.org/10.1097/00001756-199609020-00006
  51. Vaney DI, Nelson JC, Pow DV. (1998). Neurotransmitter coupling through gap junctions in the retina. J Neurosci 18: 10594-10602
  52. Wassle H, Grunert U, Rohrenbeck J. (1993). Immunocytochemical staining of AII-amacrine cells in the rat retina with antibodies against parvalbumin. J Comp Neurol 332: 407-420 https://doi.org/10.1002/cne.903320403
  53. White BC, Sullivan JM, DeGracia DJ, et al. (2000). Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 179: 1-33 https://doi.org/10.1016/S0022-510X(00)00386-5
  54. Xia XB, Mills SL. (2004). Gap junctional regulatory mechanisms in the AII amacrine cell of the rabbit retina. Vis Neurosci 21: 791-805 https://doi.org/10.1017/S0952523804215127
  55. Yenari MA, Minami M, Sun GH, et al. (2001). Calbindin d28k overexpression protects striatal neurons from transient focal cerebral ischemia. Stroke 32: 1028-1035 https://doi.org/10.1161/01.STR.32.4.1028

Cited by

  1. Localization of a Wide-Ranging Panel of Antigens in the Rat Retina by Immunohistochemistry : Comparison of Davidson’s Solution and Formalin as Fixatives vol.59, pp.10, 2011, https://doi.org/10.1369/0022155411418115
  2. Recent advances in cellular and molecular aspects of mammalian retinal ischemia vol.1, pp.2, 2010, https://doi.org/10.5497/wjp.v1.i2.30
  3. Age-related changes in calbindin and calretinin immunoreactivity in the central auditory system of the rat vol.47, pp.7, 2010, https://doi.org/10.1016/j.exger.2012.04.003
  4. Protective effects of the β3-adrenoceptor agonist CL316243 against N-methyl-D-aspartate-induced retinal neurotoxicity vol.385, pp.11, 2010, https://doi.org/10.1007/s00210-012-0796-1
  5. Degeneration and Dysfunction of Retinal Neurons in Acute Ocular Hypertensive Rats: Involvement of Calpains vol.30, pp.5, 2010, https://doi.org/10.1089/jop.2013.0100
  6. КАЛЬЦИЙ-СВЯЗЫВАЮЩИЕ БЕЛКИ ЗАЩИЩАЮТ ГАМКЕРГИЧЕСКИЕ НЕЙРОНЫ ГИППОКАМПА ОТ ГИПОКСИИ И ИШЕМИИ IN VITRO, "Биологи vol.34, pp.5, 2010, https://doi.org/10.7868/s0233475517050085
  7. Calcium dynamics and regulation in horizontal cells of the vertebrate retina: lessons from teleosts vol.117, pp.2, 2017, https://doi.org/10.1152/jn.00585.2016
  8. Calcium-Binding Proteins Protect GABAergic Neurons of the Hippocampus from Hypoxia and Ischemia in vitro vol.12, pp.1, 2018, https://doi.org/10.1134/s1990747818010105
  9. From Ganglion Cell to Photoreceptor Layer: Timeline of Deterioration in a Rat Ischemia/Reperfusion Model vol.13, pp.None, 2010, https://doi.org/10.3389/fncel.2019.00174