DOI QR코드

DOI QR Code

Combined actions of $Na^+/K^+$-ATPase, $NCX_1$ and glutamate dependent NMDA receptors in ischemic rat brain penumbra

  • Park, Sung-Jin (Department of Anatomy, College of Medicine, Dongguk University) ;
  • Jung, Yong-Wook (Department of Anatomy, College of Medicine, Dongguk University)
  • 투고 : 2010.08.26
  • 심사 : 2010.09.10
  • 발행 : 2010.09.30

초록

Instrumental role of $Na^+$ and $Ca^{2+}$ influx via $Na^+/K^+$ adenosine triphosphatase ($Na^+/K^+$-ATPase) and $Na^+/Ca^{2+}$ exchanger 1 (NCX1) is examined in the N-Methyl-D-aspartate (NMDA) receptor-mediated pathogenesis of penumbra after focal cerebral ischemia. An experimental model of 3, 6, and 24 h focal cerebral ischemia by permanent occlusion of middle cerebral artery was developed in rats. The changes in protein expression of $Na^+/K^+$-ATPase and NCX1 as well as functional subunits of NMDA receptor 2A and 2B (NR2A and NR2B) in the penumbra were assessed using by quantitative immunoblottings. The most prominent changes of $Na^+/K^+$-ATPase ($78{\pm}6%$, n=4, *P<0.05) and NCX1 ($144{\pm}2%$, n=4, *P<0.05) in the penumbra were developed 24 h after focal cerebral ischemia. The expression of NR2A in the penumbra was significantly increased ($153{\pm}9%$, n=4, *P<0.05) whereas the expression of NR2B was significantly decreased ($37{\pm}2%$, n=4, *P<0.05) as compared with sham-operated controls 3 h after focal cerebral ischemia. However, the expression of NR2A and NR2B in the penumbra was reversed 24 h after focal cerebral ischemia (NR2A: $40{\pm}7%$; NR2B: $120{\pm}16%$, n=4, *P<0.05). Moreover, the decreased expression of neuronal nuclei (NeuN) in the penumbra was most prominent than that of glial fibrillary acidic protein (GFAP) 24 h after focal cerebral ischemia. These findings imply that intracellular $Na^+$ accumulation via decreased $Na^+/K^+$-ATPase exacerbate the $Ca^{2+}$ overload cooperated by the increased NCX1 and NR2B-containing NMDA receptor which may play an important role in the pathogenesis of the penumbra.

키워드

과제정보

연구 과제 주관 기관 : Dongguk Research Fund

참고문헌

  1. Anderson CM, Swanson RA. (2000). Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32: 1-14 https://doi.org/10.1002/1098-1136(200010)32:1<1::AID-GLIA10>3.0.CO;2-W
  2. Audinat E, Lambolez B, Rossier J, Crepel F. (1994). Activity-dependent regulation of N-methyl-D-aspartate receptor subunit expression in rat cerebellar granule cells. Eur J Neurosci 6: 1792-1800 https://doi.org/10.1111/j.1460-9568.1994.tb00572.x
  3. Beck T, Weber M, Horvath E, Wree A. (1996). Functional cerebral activity during regeneration from entorhinal lesions in the rat. J Cereb Blood Flow Metab 16: 342-352 https://doi.org/10.1097/00004647-199603000-00021
  4. Ben-Ari Y. (1990). Modulation of ATP sensitive $K^+$ channels: a novel strategy to reduce the deleterious effects of anoxia. Adv Exp Med Biol 268: 481-489
  5. Benveniste H, Drejer J, Schousboe A, Diemer NH. (1984). Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43: 1369-1374 https://doi.org/10.1111/j.1471-4159.1984.tb05396.x
  6. Besancon E, Guo S, Lok J, Tymianski M, Lo EH. (2008). Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke. Trends Pharmacol Sci 29: 268-275 https://doi.org/10.1016/j.tips.2008.02.003
  7. Blaustein MP, Lederer WJ. (1999). Sodium/calcium exchange: its physiological implications. Physiol Rev 79: 763-854 https://doi.org/10.1152/physrev.1999.79.3.763
  8. Boscia F, Gala R, Pignataro G, et al. (2006). Permanent focal brain ischemia induces isoform-dependent changes in the pattern of $Na^+/Ca^{2+}$ exchanger gene expression in the ischemic core, periinfarct area, and intact brain regions. J Cereb Blood Flow Metab 26: 502-517 https://doi.org/10.1038/sj.jcbfm.9600207
  9. Czyz A, Baranauskas G, Kiedrowski L. (2002). Instrumental role of $Na^+ in NMDA excitotoxicity in glucose-deprived and depolarized cerebellar granule cells. J Neurochem 81: 379-389 https://doi.org/10.1046/j.1471-4159.2002.00851.x
  10. D'Ambrosio R, Gordon DS, Winn HR. (2002). Differential role of KIR channel and Na(+)/K(+)-pump in the regulation of extracellular K(+) in rat hippocampus. J Neurophysiol 87: 87-102 https://doi.org/10.1152/jn.00240.2001
  11. Fuller W, Parmar V, Eaton P, Bell JR, Shattock MJ. (2003). Cardiac ischemia causes inhibition of the $Na^+/K^+$ ATPase by a labile cytosolic compound whose production is linked to oxidant stress. Cardiovasc Res 57: 1044-1051 https://doi.org/10.1016/S0008-6363(02)00810-6
  12. Gegelashvili G, Schousboe A. (1997). High affinity glutamate transporters: regulation of expression and activity. Mol Pharmacol 52: 6-15 https://doi.org/10.1124/mol.52.1.6
  13. Hansen AJ, Zeuthen T. (1981). Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex. Acta Physiol Scand 113: 437-445 https://doi.org/10.1111/j.1748-1716.1981.tb06920.x
  14. Hardingham GE, Fukunaga Y, Bading H. (2002). Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5: 405-414 https://doi.org/10.1038/nn835
  15. Hasegawa Y, Fisher M, Latour LL, Dardzinski BJ, Sotak CH. (1994). MRI diffusion mapping of reversible and irreversible ischemic injury in focal brain ischemia. Neurology 44: 1484-1490 https://doi.org/10.1212/WNL.44.8.1484
  16. Ishii T, Moriyoshi K, Sugihara H, et al. (1993). Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem 268: 2836-2843
  17. Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW. (2004). Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305: 99-103 https://doi.org/10.1126/science.1096485
  18. Kiedrowski L. (1999). N-methyl-D-aspartate excitotoxicity: relationships among plasma membrane potential, Na(+)/Ca(2+) exchange, mitochondrial Ca(2+) overload, and cytoplasmic concentrations of Ca(2+), H(+), and K(+). Mol Pharmacol 56: 619-632 https://doi.org/10.1124/mol.56.3.619
  19. Kiedrowski L. (2001). Repolarization of the plasma membrane shapes NMDA-induced cytosolic [Ca2+] transients. Neuroreport 12: 3579-3582 https://doi.org/10.1097/00001756-200111160-00041
  20. Kolker S, Okun JG, Ahlemeyer B, et al. (2002). Chronic treatment with glutaric acid induces partial tolerance to excitotoxicity in neuronal cultures from chick embryo telencephalons. J Neurosci Res 68: 424-431 https://doi.org/10.1002/jnr.10189
  21. Lees GJ, Leong W. (1996). Interactions between excitotoxins and the $Na^+/K^+$-ATPase inhibitor ouabain in causing neuronal lesions in the rat hippocampus. Brain Res 714: 145-155 https://doi.org/10.1016/0006-8993(95)01518-3
  22. Lipton SA, Rosenberg PA. (1994). Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330: 613-622 https://doi.org/10.1056/NEJM199403033300907
  23. MacDonald JF, Xiong ZG, Jackson MF. (2006). Paradox of $Ca^{2+}$ signaling, cell death and stroke. Trends Neurosci 29: 75-81 https://doi.org/10.1016/j.tins.2005.12.001
  24. Madl JE, Burgesser K. (1993). Adenosine triphosphate depletion reverses sodium-dependent, neuronal uptake of glutamate in rat hippocampal slices. J Neurosci 13: 4429-4444
  25. Martin RL, Lloyd HG, Cowan AI. (1994). The early events of oxygen and glucose deprivation: setting the scene for neuronal death? Trends Neurosci 17: 251-257 https://doi.org/10.1016/0166-2236(94)90008-6
  26. Matsuda T, Arakawa N, Takuma K, et al. (2001). SEA0400, a novel and selective inhibitor of the $Na^+-Ca^{2+}$ exchanger, attenuates reperfusion injury in the in vitro and in vivo cerebral ischemic models. J Pharmacol Exp Ther 298: 249-256
  27. Meguro H, Mori H, Araki K, et al. (1992). Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357: 70-74 https://doi.org/10.1038/357070a0
  28. Monyer H, Sprengel R, Schoepfer R, et al. (1992). Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256: 1217-1221. https://doi.org/10.1126/science.256.5060.1217
  29. Mori H, Mishina M. (1995). Structure and function of the NMDA receptor channel. Neuropharmacology 34: 1219-1237 https://doi.org/10.1016/0028-3908(95)00109-J
  30. Perkel DJ, Petrozzino JJ, Nicoll RA, Connor JA. (1993). The role of $Ca^{2+} entry via synaptically activated NMDA receptors in the induction of long-term potentiation. Neuron 11: 817-823 https://doi.org/10.1016/0896-6273(93)90111-4
  31. Pignataro G, Tortiglione A, Scorziello A, et al. (2004). Evidence for a protective role played by the $Na^+/Ca^{2+}$ exchanger in cerebral ischemia induced by middle cerebral artery occlusion in male rats. Neuropharmacology 46: 439-448 https://doi.org/10.1016/j.neuropharm.2003.09.015
  32. Quednau BD, Nicoll DA, Philipson KD. (1997). Tissue specificity and alternative splicing of the $Na^+/Ca^{2+}$ exchanger isoforms NCX1, NCX2, and NCX3 in rat. Am J Physiol 272: C1250-1261 https://doi.org/10.1152/ajpcell.1997.272.4.C1250
  33. Resink A, Villa M, Benke D, Hidaka H, Mohler H, Balazs R. (1996). Characterization of agonist-induced down-regulation of NMDA receptors in cerebellar granule cell cultures. J Neurochem 66: 369-377
  34. Rumbaugh G, Vicini S. (1999). Distinct synaptic and extrasynaptic NMDA receptors in developing cerebellar granule neurons. J Neurosci 19: 10603-10610.
  35. Schroder UH, Breder J, Sabelhaus CF, Reymann KG. (1999). The novel $Na^+/Ca^{2+}$ exchange inhibitor KB-R7943 protects CA1 neurons in rat hippocampal slices against hypoxic/hypoglycemic injury. Neuropharmacology 38: 319-321 https://doi.org/10.1016/S0028-3908(98)00198-1
  36. Silver IA, Deas J, Erecinska M. (1997). Ion homeostasis in brain cells: differences in intracellular ion responses to energy limitation between cultured neurons and glial cells. Neuroscience 78: 589-601 https://doi.org/10.1016/S0306-4522(96)00600-8
  37. Storck T, Schulte S, Hofmann K, Stoffel W. (1992). Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci U S A 89: 10955-10959 https://doi.org/10.1073/pnas.89.22.10955
  38. Stys PK, Waxman SG, Ransom BR. (1992). Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of $Na^+$ channels and $Na^+-Ca^{2+}$ exchanger. J Neurosci 12: 430-439
  39. Tasker RC, Coyle JT, Vornov JJ. (1992). The regional vulnerability to hypoglycemia-induced neurotoxicity in organotypic hippocampal culture: protection by early tetrodotoxin or delayed MK-801. J Neurosci 12: 4298-4308
  40. Veldhuis WB, van der Stelt M, Delmas F, et al. (2003). In vivo excitotoxicity induced by ouabain, a $Na^+/K^+$-ATPase inhibitor. J Cereb Blood Flow Metab 23: 62-74 https://doi.org/10.1097/01.WCB.0000039287.37737.50
  41. Witte OW, Bidmon HJ, Schiene K, Redecker C, Hagemann G. (2000). Functional differentiation of multiple perilesional zones after focal cerebral ischemia. J Cereb Blood Flow Metab 20: 1149-1165 https://doi.org/10.1097/00004647-200008000-00001
  42. Yu AC, Gregory GA, Chan PH. (1989). Hypoxia-induced dysfunctions and injury of astrocytes in primary cell cultures. J Cereb Blood Flow Metab 9: 20-28. https://doi.org/10.1038/jcbfm.1989.3

피인용 문헌

  1. Oligodendrocyte N-Methyl-d-aspartate Receptor Signaling: Insights into Its Functions vol.47, pp.2, 2010, https://doi.org/10.1007/s12035-013-8408-8
  2. Polymorphisms in migraine-associated gene, atp1a2, and ischemic stroke risk in a biracial population: the genetics of early onset stroke study vol.2, pp.1, 2010, https://doi.org/10.1186/2193-1801-2-46
  3. Naringin ameliorates sodium arsenite-induced renal and hepatic toxicity in rats: decisive role of KIM-1, Caspase-3, TGF-β, and TNF-α vol.37, pp.8, 2015, https://doi.org/10.3109/0886022x.2015.1074462
  4. Cofilin as a Promising Therapeutic Target for Ischemic and Hemorrhagic Stroke vol.7, pp.1, 2010, https://doi.org/10.1007/s12975-015-0438-2
  5. Affinity of Tau antibodies for solubilized pathological Tau species but not their immunogen or insoluble Tau aggregates predicts in vivo and ex vivo efficacy vol.11, pp.None, 2010, https://doi.org/10.1186/s13024-016-0126-z
  6. The Functional and Molecular Properties, Physiological Functions, and Pathophysiological Roles of GluN2A in the Central Nervous System vol.54, pp.2, 2010, https://doi.org/10.1007/s12035-016-9715-7
  7. Cofilin: Molecular and Cellular Functions and Its Role in the Functioning of the Nervous System vol.13, pp.1, 2019, https://doi.org/10.1134/s1819712419010124
  8. Dynamics of Internalization and Intracellular Interaction of Tau Antibodies and Human Pathological Tau Protein in a Human Neuron-Like Model vol.11, pp.None, 2010, https://doi.org/10.3389/fneur.2020.602292