DOI QR코드

DOI QR Code

Immunohistochemical study on the expre ssion of calcium binding proteins (calbindin-D28k, calretinin, and parvalbumin) in the cerebellum of the nNOS knock-out(-/-) mice

  • Lee, Jae-Chul (Department of Anatomy, Seoul National University College of Medicine) ;
  • Chung, Yoon-Hee (Chung-Ang University College of Medicine) ;
  • Cho, Yu-Jin (Department of Anatomy, Seoul National University College of Medicine) ;
  • Kim, Jan-Di (Department of Anatomy, Seoul National University College of Medicine) ;
  • Kim, Na-Hee (Department of Anatomy, Seoul National University College of Medicine) ;
  • Cha, Choong-Ik (Department of Anatomy, Seoul National University College of Medicine) ;
  • Joo, Kyeung-Min (Department of Anatomy, Seoul National University College of Medicine)
  • Received : 2010.02.04
  • Accepted : 2010.03.02
  • Published : 2010.03.30

Abstract

Nitric Oxide (NO) actively participates in the regulation of neuronal intracellular $Ca^{2+}$ levels by modulating the activity of various channels and receptors. To test the possibility that modulation of $Ca^{2+}$ buff er protein expression level by NO participates in this regulatory effect, we examined expression of calbindin-D28k, calretinin, and parvalbumin in the cerebellum of neuronal NO synthase knock-out ($nNOS^{(-/-)}$) mice using immunohistochemistry. We observed that in the cerebellar cortex of the $nNOS^{(-/-)}$ mice, expression of calbindin-D28k and parvalbumin were significantly increased while expression of calretinin was signifi cantly decreased. These results suggest another mechanism by which NO can participate in the regulation of $Ca^{2+}$ homeostasis.

Keywords

Acknowledgement

Supported by : BK21 project for Medicine

References

  1. Abbott LC, Nahm SS. (2004). Neuronal nitric oxide synthase expression in cerebellar mutant mice. Cerebellum 3: 141-151 https://doi.org/10.1080/14734220410031927
  2. Airaksinen MS, Eilers J, Garaschuk O, Th oenen H, Konnerth A, Meyer M. (1997). Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. Proc Natl Acad Sci USA 94: 1488-1493 https://doi.org/10.1073/pnas.94.4.1488
  3. Airaksinen MS, Th oenen H, Meyer M. (1997). Vulnerability of midbrain dopaminergic neurons in calbindin-D28kdefi cient mice: lack of evidence for a neuroprotective role of endogenous calbindin in MPTP-treated and weaver mice. Eur J Neurosci 9: 120-127 https://doi.org/10.1111/j.1460-9568.1997.tb01360.x
  4. Arevalo R, Sanchez F, Alonso JR, Rubio M, Aijon J, Vazquez R. (1993). Infrequent cellular coexistence of NADPHdiaphorase and calretinin in the neurosecretory nuclei and adjacent areas of the rat hypothalamus. J Chem Neuroanat 6: 335-341 https://doi.org/10.1016/0891-0618(93)90008-R
  5. Barski JJ, Dethleff sen K, Meyer M. (2000). Cre recombinase expression in cerebellar Purkinje cells. Genesis 28: 93-98 https://doi.org/10.1002/1526-968X(200011/12)28:3/4<93::AID-GENE10>3.0.CO;2-W
  6. Bertini G, Peng ZC, Bentivoglio M. (1996). The chemical heterogeneity of cortical interneurons: nitric oxide synthase vs. calbindin and parvalbumin immunoreactivity in the rat. Brain Res Bull 39: 261-266 https://doi.org/10.1016/0361-9230(95)02133-7
  7. Bouilleret V, Schwaller B, Schurmans S, Celio MR, Fritschy JM. (2000). Neurodegenerative and morphogenic changes in a mouse model of temporal lobe epilepsy do not depend on the expression of the calcium-binding proteins parvalbumin, calbindin, or calretinin. Neuroscience 97: 47-58 https://doi.org/10.1016/S0306-4522(00)00017-8
  8. Celio MR. (1990). Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35: 375-475 https://doi.org/10.1016/0306-4522(90)90091-H
  9. Chard PS, Bleakman D, Christakos S, Fullmer CS, Miller RJ. (1993). Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurones. J Physiol 472: 341-357 https://doi.org/10.1113/jphysiol.1993.sp019950
  10. Cheron G, Schurmans S, Lohof A, et al. (2000). Electrophysiological behavior of Purkinje cells and motor coordination in calretinin knock-out mice. Prog Brain Res 124: 299-308 https://doi.org/10.1016/S0079-6123(00)24024-7
  11. Chung YH, Shin C, Park KH, Cha CI. (2000). Immunohistochemical study on the distribution of neuronal voltagegated calcium channels in the rat cerebellum. Brain Res 865: 278-282 https://doi.org/10.1016/S0006-8993(00)02288-5
  12. Clementi E, Riccio M, Sciorati C, Nisticò G, Meldolesi J. (1996). Th e type 2 ryanodine receptor of neurosecretory PC12 cells is activated by cyclic ADP-ribose. Role of the nitric oxide/cGMP pathway. J Biol Chem 271: 17739-17745 https://doi.org/10.1074/jbc.271.30.17739
  13. Dawson VL, Dawson TM. (1996). Nitric oxide actions in neurochemistry. Neurochem Int 29: 97-110 https://doi.org/10.1016/0197-0186(95)00149-2
  14. Doerner D, Alger BE. (1988). Cyclic GMP depresses hippocampal $Ca^{2+}$ current through a mechanism independent of cGMP-dependent protein kinase. Neuron 1: 693-699 https://doi.org/10.1016/0896-6273(88)90168-7
  15. D'Orlando C, Celio MR, Schwaller B. (2002). Calretinin and calbindin D-28k, but not parvalbumin protect against glutamate-induced delayed excitotoxicity in transfected N18-RE 105 neuroblastoma-retina hybrid cells. Brain Res 945: 181-190 https://doi.org/10.1016/S0006-8993(02)02753-1
  16. D'Orlando C, Fellay B, Schwaller B, et al. (2001). Calretinin and calbindin D-28k delay the onset of cell death after excitotoxic stimulation in transfected P19 cells. Brain Res 909: 145-158 https://doi.org/10.1016/S0006-8993(01)02671-3
  17. Esplugues JV. (2002). NO as a signaling molecule in the nervous system. Br J Pharmacol 135: 1079-1095 https://doi.org/10.1038/sj.bjp.0704569
  18. Geula C, Schatz CR, Mesulam MM. (1993). Differential locali zation of NADPH-diaphorase and calbindin-D28k within the cholinergic neurons of the basal forebrain, striatum and brainstem in the rat, monkey, baboon and human. Neuroscience 54: 461-476 https://doi.org/10.1016/0306-4522(93)90266-I
  19. Huang PL, Dawson TM, Bredt DS, Snyder SH, Fishman MC. (1993). Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75: 1273-1286 https://doi.org/10.1016/0092-8674(93)90615-W
  20. Knowles RG, Palacios M, Palmer RM, Moncada S. (1989). Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase. Proc Natl Acad Sci USA 86: 5159-5162 https://doi.org/10.1073/pnas.86.13.5159
  21. Kriegsfeld LJ, Eliasson MJ, Demas GE, et al. (1999). Nocturnal motor coordination deficits in neuronal nitric oxide synthase knock-out mice. Neuroscience 89: 311-315 https://doi.org/10.1016/S0306-4522(98)00614-9
  22. KuZnicki J, Isaacs KR, Jacobowitz DM. (1996). Th e expression of calretinin in transfected PC12 cells provides no protection against Ca(2+)-overload or trophic factor deprivation. Biochem Biophys Acta 1313: 194-200 https://doi.org/10.1016/0167-4889(96)00089-4
  23. Lee SH, Schwaller B, Neher E. (2000). Kinetics of Ca2+ binding to parvalbumin in bovine chromaffin cells: implications for [Ca2+] transients of neuronal dendrites, J. Physiol. 525: 419-432 https://doi.org/10.1111/j.1469-7793.2000.t01-2-00419.x
  24. Lei S, Jackson MF, Jia Z, et al. (2000). Cyclic GMP-dependent feedback inhibition of AMPA receptors is independent of PKG. Nat Neurosci 3: 559-565 https://doi.org/10.1038/75729
  25. Lei SZ, Pan ZH, Aggarwal SK, et al. (1992). Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex. Neuron 8: 1087-1099 https://doi.org/10.1016/0896-6273(92)90130-6
  26. Lipton SA, Choi YB, Pan ZH, et al. (1993). A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364: 626-632 https://doi.org/10.1038/364626a0
  27. Manzoni O, Prezeau L, Marin P, Deshager S, Bockaert J, Fagni L. (1992). Nitric oxide-induced blockade of NMDA receptors, Neuron 8 : 653-662. https://doi.org/10.1016/0896-6273(92)90087-T
  28. Nelson RJ, Demas GE, Huang PL, et al. (1995). Behavioural abnormalities in male mice lacking neuronal nitric oxide synthase. Nature 378: 383-386 https://doi.org/10.1038/378383a0
  29. Resibois A, Rogers JH. (1992). Calretinin in rat brain: an immunohistochemical study. Neuroscience 46: 101-134 https://doi.org/10.1016/0306-4522(92)90012-Q
  30. Rhyu IJ, Nahm SS, Hwang SJ, et al. (2003). Altered neuronal nitric oxide synthase expression in the cerebellum of calcium channel mutant mice. Brain Res977: 129-140 https://doi.org/10.1016/S0006-8993(03)02403-X
  31. Schanne FA, Kane AB, Young EE, Farber JL. (1979). Calcium dependence of toxic cell death: a fi nal common pathway Science 206: 700-702 https://doi.org/10.1126/science.386513
  32. Schiffmann SN, Cheron G, Lohof A, et al. (1999). Impaired motor coordination and Purkinje cell excitability in mice lacking calretinin. Proc Natl Acad Sci USA 96: 5257-5262 https://doi.org/10.1073/pnas.96.9.5257
  33. Schwaller B, Meyer M, Schiff mann S. (2002). 'New' functions for 'old' proteins: the role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum : 241-258
  34. Sheng H, Schmidt HH, Nakane M, et al. (1992). Charac terization and localization of nitric oxide synthase in nonadrenergic non-cholinergic nerves from bovine retractor penis muscles. Br J Pharmacol 106: 768-773 https://doi.org/10.1111/j.1476-5381.1992.tb14411.x
  35. Vig PJ, Subramony SH, Qin Z, McDaniel DO, Fratkin JD. (2000). Relationship between ataxin-1 nuclear inclusions and Purkinje cell specific proteins in SCA-1 transgenic mice. J Neurol Sci 174: 100-110 https://doi.org/10.1016/S0022-510X(00)00262-8
  36. Yoshimura N, Seki S, de Groat WC. (2001). Nitric oxide modulates Ca(2+) channels in dorsal root ganglion neurons innervating rat urinary bladder. J Neurophysiol 86: 304-311 https://doi.org/10.1152/jn.2001.86.1.304

Cited by

  1. Cerebrospinal Fluid Calbindin D Concentration as a Biomarker of Cerebellar Disease Progression in Niemann-Pick Type C1 Disease vol.358, pp.2, 2016, https://doi.org/10.1124/jpet.116.232975
  2. Changes in the cerebellar cytoarchitecture of hibernating hedgehog Erinaceus europaeus L. (Mammalia): an immunocytochemical approach vol.84, pp.1, 2010, https://doi.org/10.1080/24750263.2017.1380722