Acknowledgement
Supported by : Korean Government (MOEHRD)
References
- Agaton C, Galli J, Höidén Guthenberg I, et al. (2003). Affinity proteomics for systematic protein profiling of chromosome 21 gene products in human tissues. Mol Cell Proteomics 2: 405-414 https://doi.org/10.1074/mcp.M300022-MCP200
- Ahmad K, Henikoff S. (2002). Th e histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Molecular cell 9: 1191-1200 https://doi.org/10.1016/S1097-2765(02)00542-7
- Alberts B. (2002). Molecular biology of the cell, 4th edn (New York, Garland Science)
- Arney KL, Fisher AG. (2004). Epigenetic aspects of diff erentiation. J Cell Sci 117: 4355-4363 https://doi.org/10.1242/jcs.01390
- Arrell DK, Niederlander NJ, Faustino RS, Behfar A, Terzic A. (2008). Cardioinductive network guiding stem cell differentiation revealed by proteomic cartography of tumor necrosis factor alpha-primed endodermal secretome. Stem Cells 26: 387-400 https://doi.org/10.1634/stemcells.2007-0599
- Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17: 126-140 https://doi.org/10.1101/gad.224503
- Baba M, Hasegawa H, Nakayabu M, et al. (1995). Establishment and characteristics of a gastric cancer cell line (HuGC-OOHIRA) producing high levels of G-CSF, GM-CSF, and IL-6: the presence of autocrine growth control by G-CSF. Am J Hematol 49: 207-215 https://doi.org/10.1002/ajh.2830490306
- Bannister AJ, Zegerman P, Partridge JF, et al. (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410: 120-124 https://doi.org/10.1038/35065138
- Bartel DP. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297 https://doi.org/10.1016/S0092-8674(04)00045-5
- Bartel DP, Chen CZ. (2004). Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5: 396-400
- Baudino TA, Cleveland JL. (2001). The Max network gone mad. Mol Cell Biol 21: 691-702 https://doi.org/10.1128/MCB.21.3.691-702.2001
- Bentley GA, Boulot G, Chitarra V. (1994). Cross-reactivity in antibody-antigen interactions. Res Immunol 145: 45-48 https://doi.org/10.1016/S0923-2494(94)80042-1
- Bernstein BE, Mikkelsen TS, Xie X, et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125: 315-326 https://doi.org/10.1016/j.cell.2006.02.041
- Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM. (2010). Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463: 1042-1047 https://doi.org/10.1038/nature08752
- Bird A. (2002). DNA methylation patterns and epigenetic memory. Genes Development 16: 6-21 https://doi.org/10.1101/gad.947102
- Black DL. (2003). Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72: 291-336 https://doi.org/10.1146/annurev.biochem.72.121801.161720
- Blanchette M, Bataille AR, Chen X, et al. (2006). Genomewide computational prediction of transcriptional regulatory modules reveals new insights into human gene expression. Genome Res 16; 656-668 https://doi.org/10.1101/gr.4866006
- Boyer LA, Lee TI, Cole MF, et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122: 947-956 https://doi.org/10.1016/j.cell.2005.08.020
- Bradley TR, Metcalf D. (1966). The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci 44: 287-299 https://doi.org/10.1038/icb.1966.28
- Burns CE, Zon LI. (2002). Portrait of a stem cell. Dev Cell 3: 612-613 https://doi.org/10.1016/S1534-5807(02)00329-5
- Byrne JA, Pedersen DA, Clepper LL, et al. (2007) Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450: 497-502 https://doi.org/10.1038/nature06357
- Cai J, Weiss ML, Rao MS. (2004). In search of "stemness". Exp Hematol 32: 585-598 https://doi.org/10.1016/j.exphem.2004.03.013
- Chambers I, Silva J, Colby D, et al. (2007). Nanog safeguards pluripotency and mediates germline development. Nature 450: 1230-1234 https://doi.org/10.1038/nature06403
- Chang HY, Th omson JA, Chen X. (2006) Microarray analysis of stem cells and differentiation. Methods Enzymol 420: 225-254 https://doi.org/10.1016/S0076-6879(06)20010-7
- Chen CZ, Li L, Lodish HF, Bartel DP. (2004). MicroRNAs modulate hematopoietic lineage differentiation. Science 303: 83-86 https://doi.org/10.1126/science.1091903
- Cheng LC, Tavazoie M, Doetsch F. (2005). Stem cells: from epigenetics to microRNAs. Neuron 46: 363-367 https://doi.org/10.1016/j.neuron.2005.04.027
- Clarke MF, Fuller M. (2006). Stem cells and cancer: two faces of eve. Cell 124: 1111-1115 https://doi.org/10.1016/j.cell.2006.03.011
- Cui Q, Yu Z, Purisima EO, Wang E. (2006). Principles of microRNA regulation of a human cellular signaling network. Mol Syst Biol 2: 46
- Davidson EH. (2006). Th e regulatory genome: gene regulatory networks in development and evolution, New edn (Oxford Boston, Elsevier / Academic Press)
- Dou Y, Gorovsky MA. (2000). Phosphorylation of linker histone H1 regulates gene expression in vivo by creating a charge patch. Molecular Cell 6: 225-231 https://doi.org/10.1016/S1097-2765(00)00024-1
- Dover J, Schneider J, Tawiah-Boateng MA, et al. (2002). Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J Biol Chem 277: 28368-28371 https://doi.org/10.1074/jbc.C200348200
- Draper JS, Smith K, Gokhale P, et al. (2004). Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22: 53-54 https://doi.org/10.1038/nbt922
- Edman P. (1960). Phenylthiohydantoins in protein analysis. Ann N Y Acad Sci 88: 602-610
- Elliott RL, Blobe GC. (2005). Role of transforming growth factor Beta in human cancer. J Clin Oncol 23: 2078-2093 https://doi.org/10.1200/JCO.2005.02.047
- Elliott ST, Crider DG, Garnham CP, Boheler KR, Van Eyk JE. (2004). Two-dimensional gel electrophoresis database of murine R1 embryonic stem cells. Proteomics 4: 3813-3832 https://doi.org/10.1002/pmic.200300820
- Feinberg AP, Ohlsson R, Henikoff S. (2006). The epigenetic progenitor origin of human cancer. Nat Rev Genet 7: 21-33 https://doi.org/10.1038/nrg1748
- Feldman N, Gerson A, Fang J, et al. (2006). G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol 8: 188-194 https://doi.org/10.1038/ncb1353
- Fischle W, Wang Y, Allis CD. (2003) Binary switches and modification cassettes in histone biology and beyond. Nature 425: 475-479 https://doi.org/10.1038/nature02017
- Fortunel NO, Otu HH, Ng HH, et al. (2003). Comment on " 'Stemness': transcriptional profiling of embryonic and adult stem cells" and "a stem cell molecular signature". Science 302: 393
- Gandhi TK, Zhong J, Mathivanan S, et al. (2006). Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet 38: 285-293 https://doi.org/10.1038/ng1747
- Garcia BA, Pesavento JJ, Mizzen CA, Kelleher NL. (2007). Pervasive combinatorial modification of histone H3 in human cells. Nat Methods 4: 487-489 https://doi.org/10.1038/nmeth1052
- Gasson JC, Weisbart RH, Kaufman SE, et al. (1984). Purifi ed human granulocyte-macrophage colony-stimulating factor: direct action on neutrophils. Science 226: 1339-1342 https://doi.org/10.1126/science.6390681
- He L, He X, Lim LP, et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature 447: 1130-1134 https://doi.org/10.1038/nature05939
- Heck AJ, Mummery C, Whetton AD, et al. (2007). Proteome biology of stem cells. Stem Cell Res 1: 7-8 https://doi.org/10.1016/j.scr.2007.08.001
- Hopkins AL, Groom CR. (2002). Th e druggable genome. Nat Rev Drug Discov 1: 727-730 https://doi.org/10.1038/nrd892
- Howard ML, Davidson EH. (2004). cis-Regulatory control circuits in development. Dev Biol 271: 109-118 https://doi.org/10.1016/j.ydbio.2004.03.031
- Hunt DF, Yates JR 3rd, Shabanowitz J, Winston S, Hauer CR. (1986). Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci U S A 83: 6233-6237 https://doi.org/10.1073/pnas.83.17.6233
- Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR. (2002). A stem cell molecular signature. Science 298: 601-604 https://doi.org/10.1126/science.1073823
- Jacobs JM, Waters KM, Kathmann LE, et al. (2008). The mammary epithelial cell secretome and its regulation by signal transduction pathways. J Proteome Res 7: 558-569 https://doi.org/10.1021/pr0704377
- Jenuwein T, Allis CD. (2001). Translating the histone code. Science 293: 1074-1080 https://doi.org/10.1126/science.1063127
- Johnston RJ Jr, Chang S, Etchberger JF, Ortiz CO, Hobert O. (2005). MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. Proc Natl Acad Sci U S A 102: 12449-12454 https://doi.org/10.1073/pnas.0505530102
- Jones PA, Takai D. (2001). The role of DNA methylation in mammalian epigenetics. Science 293: 1068-1070 https://doi.org/10.1126/science.1063852
- Judson RL, Babiarz JE, Venere M, Blelloch R. (2009). Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol 27: 459-461 https://doi.org/10.1038/nbt.1535
- Kang DJ, Oh SO, Ahn SM, Lee BH, Moon MH. (2008). Proteomic analysis of exosomes from human neural stem cells by fl ow fi eld-fl ow fractionation and nanofl ow liquid chromatography-tandem mass spectrometry. J Proteome Res 7: 3475-3480 https://doi.org/10.1021/pr800225z
- Kang YK, Koo DB, Park JS, et al. (2001). Aberrant methylation of donor genome in cloned bovine embryos. Nat Genet 28: 173-177 https://doi.org/10.1038/88903
- Khwaja FW, Svoboda P, Reed M, Pohl J, Pyrzynska B, Van Meir EG. (2006). Proteomic identifi cation of the wt-p53-regulated tumor cell secretome. Oncogene 25: 7650-7661 https://doi.org/10.1038/sj.onc.1209969
- Kim H, Hahn M, Grabowski P, et al. (2006). The Bacillus subtilis spore coat protein interaction network. Mol Microbiol 59: 487-502, https://doi.org/10.1111/j.1365-2958.2005.04968.x
- Kim J, Lo L, Dormand E, Anderson DJ. (2003). SOX10 maintains multipotency and inhibits neuronal diff erentiation of neural crest stem cells. Neuron 38: 17-31 https://doi.org/10.1016/S0896-6273(03)00163-6
- Klose RJ, Sarraf SA, Schmiedeberg L, McDermott SM, Stancheva I, Bird AP. (2005). DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Mol Cell 19: 667-678 https://doi.org/10.1016/j.molcel.2005.07.021
- Kratchmarova I, Blagoev B, Haack-Sorensen M, Kassem M, Mann M. (2005). Mechanism of divergent growth factor eff ects in mesenchymal stem cell diff erentiation. Science 308: 1472-1477 https://doi.org/10.1126/science.1107627
- Krijgsveld J, Whetton AD, Lee BH, et al. (2008). Proteome biology of stem cells: a new joint HUPO and ISSCR initiative. Mol Cell Proteomics 7: 204-205 https://doi.org/10.1074/mcp.H800001-MCP200
- Krishna RG, Wold F. (1993). Post-translational modifi cation of proteins. Adv Enzymol Relat Areas Mol Biol 67: 265-298
- Lee JH, Hart SRL, Skalnik DG. (2004). Histone deacetylase activity is required for embryonic stem cell diff erentiation. Genesis 38: 32-38 https://doi.org/10.1002/gene.10250
- Levchenko A. (2005). Proteomics takes stem cell analyses to another level. Nat Biotechnol 23: 828-830 https://doi.org/10.1038/nbt0705-828
- Lim LP, Lau NC, Garrett-Engele P, et al. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433: 769-773 https://doi.org/10.1038/nature03315
- Liu C, Zhao X. (2009). MicroRNAs in adult and embryonic neurogenesis. Neuromolecular Med 11: 141-152 https://doi.org/10.1007/s12017-009-8077-y
- Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251-260 https://doi.org/10.1038/38444
- Luzi E, Marini F, Carbonell SS, Tognarini I, Galli G, Brandi ML. (2008). Osteogenic diff erentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting the SMAD1 transcription factor. J Bone Miner Res 23: 287-295
- Maitra A, Arking DE, Shivapurkar N, et al. (2005). Genomic alterations in cultured human embryonic stem cells. Nat Genet 37: 1099-1103 https://doi.org/10.1038/ng1631
- Margueron R, Trojer P, Reinberg D. (2005). The key to development: interpreting the histone code? Curr Opin Genet Dev 15: 163-176 https://doi.org/10.1016/j.gde.2005.01.005
- Marx J. (2003). Cancer research. Mutant stem cells may seed cancer. Science 301: 1308-1310 https://doi.org/10.1126/science.301.5638.1308
- Mattick JS, Makunin IV. (2006). Non-coding RNA. Hum Mol Genet 15 Spec No 1: R17-29 https://doi.org/10.1093/hmg/ddl046
- Metcalf D. (1991). The Florey Lecture, 1991. The colonystimulating factors: discovery to clinical use. Philos Trans R Soc Lond B Biol Sci 333: 147-173 https://doi.org/10.1098/rstb.1991.0065
- Nichols J, Zevnik B, Anastassiadis K, et al. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95: 379-391 https://doi.org/10.1016/S0092-8674(00)81769-9
- Nightingale KP, O'Neill LP, Turner BM. (2006). Histone modifi cations: signalling receptors and potential elements of a heritable epigenetic code. Curr Opin Genet Dev 16: 125-136 https://doi.org/10.1016/j.gde.2006.02.015
- Nomura H, Imazeki I, Oheda M, et al. (1986). Purification and characterization of human granulocyte colonystimulating factor (G-CSF). EMBO J 5: 871-876
- Ong SE, Mittler G, Mann M. (2004). Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nat Methods 1: 119-126 https://doi.org/10.1038/nmeth715
- O'Shea JJ, Gadina M, Schreiber RD. (2002). Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109(Suppl): S121-131 https://doi.org/10.1016/S0092-8674(02)00701-8
- Pardal R, Clarke MF, Morrison SJ. (2003). Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3: 895-902 https://doi.org/10.1038/nrc1232
- Pasquinelli AE, Hunter S, Bracht J. (2005). MicroRNAs: a developing story. Curr Opin Genet Dev 15: 200-205 https://doi.org/10.1016/j.gde.2005.01.002
- Pesavento JJ, Kim YB, Taylor GK, Kelleher NL. (2004). Shotgun annotation of histone modifications: a new approach for streamlined characterization of proteins by top down mass spectrometry. J Am Chem Soc 126: 3386-3387 https://doi.org/10.1021/ja039748i
- Plasterk RH. (2006). Micro RNAs in animal development. Cell 124: 877-881 https://doi.org/10.1016/j.cell.2006.02.030
- Poy MN, Eliasson L, Krutzfeldt J, et al. (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432: 226-230 https://doi.org/10.1038/nature03076
- Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA. (2002). "Stemness": transcriptional profi ling of embryonic and adult stem cells. Science 298: 597-600 https://doi.org/10.1126/science.1072530
- Reik W. (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447: 425-432 https://doi.org/10.1038/nature05918
- Reinders J, Sickmann A. (2005). State-of-the-art in phosphoproteomics. Proteomics 5: 4052-4061 https://doi.org/10.1002/pmic.200401289
- Rubio D, Garcia-Castro J, Martín MC, et al. (2005). Spontaneous human adult stem cell transformation. Cancer Res 65: 3035-3039 https://doi.org/10.1158/0008-5472.CAN-04-4194
- Russo VEA, Martienssen RA, Riggs AD. (1996). Epigenetic mechanisms of gene regulation (Plainview, N.Y., Cold Spring Harbor Laboratory Press)
- Sanosaka T, Namihira M, Nakashima K. (2009). Epigenetic mechanisms in sequential differentiation of neural stem cells. Epigenetics 4: 89-92 https://doi.org/10.4161/epi.4.2.8233
- Schwartz BE, Ahmad K. (2005). Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev 19: 804-814 https://doi.org/10.1101/gad.1259805
- Shalgi R, Lieber D, Oren M, Pilpel Y. (2007). Global and Local Architecture of the Mammalian microRNA-Transcription Factor Regulatory Network. PLoS Comput Biol 3: e131 https://doi.org/10.1371/journal.pcbi.0030131
- Sharan R, Ulitsky I, Shamir R. (2007). Network-based prediction of protein function. Mol Syst Biol 3: 88
- Stark A, Brennecke J, Russell RB , Cohen SM. (2003). Identification of Drosophila MicroRNA targets. PLoS Biol 1: E60 https://doi.org/10.1371/journal.pbio.0000060
- Stein LD. (2004). Human genome: end of the beginning. Nature 431: 915-916 https://doi.org/10.1038/431915a
- Stolt CC, Rehberg S, Ader M, et al. (2002). Terminal diff erentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev 16: 165-170 https://doi.org/10.1101/gad.215802
- Tai MH, Chang CC, Kiupel M, Webster JD, Olson LK, Trosko JE. (2005). Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis 26: 495-502
- Takahashi K, Tanabe K, Ohnuki M, et al. (2007). Induction of pluripotent stem cells from adult human fi broblasts by defi ned factors. Cell 131: 861-872 https://doi.org/10.1016/j.cell.2007.11.019
- Takahashi K, Yamanaka S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defi ned factors. Cell 126: 663-676 https://doi.org/10.1016/j.cell.2006.07.024
- Taverna SD, Ueberheide BM, Liu Y, et al. (2007). Longdistance combinatorial linkage between methylation and acetylation on histone H3 N termini. Proc Natl Acad Sci U S A 104: 2086-2091 https://doi.org/10.1073/pnas.0610993104
- Tay YM, Tam WL, Ang YS, et al. (2008). MicroRNA-134 modulates the differentiation of mouse embryonic stem cells where it causes post-transcriptional attenuation of nanog and LRH1. Stem Cells 26: 17-29 https://doi.org/10.1634/stemcells.2007-0295
- Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA. (2005). Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366: 2019-2025 https://doi.org/10.1016/S0140-6736(05)67813-0
- The ENCODE Project Consortium. (2004). The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306: 636-640 https://doi.org/10.1126/science.1105136
- Thomas CE, Kelleher NL, Mizzen CA. (2006). Mass spectrometric characterization of human histone H3: a bird's eye view. J Proteome Res 5: 240-247 https://doi.org/10.1021/pr050266a
- Uhlen M, Bjorling E, Agaton C, et al. (2005). A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4: 1920-1932 https://doi.org/10.1074/mcp.M500279-MCP200
- Uhlen M, Ponten F. (2005). Antibody-based proteomics for human tissue profi ling. Mol Cell Proteomics 4: 384-393 https://doi.org/10.1074/mcp.R500009-MCP200
- Unwin RD, Smith DL, Blinco D, et al. (2006). Quantitative proteomics reveals posttranslational control as a regulatory factor in primary hematopoietic stem cells. Blood 107: 4687-4694 https://doi.org/10.1182/blood-2005-12-4995
- Van Hoof D, Muñoz J, Braam SR, et al. (2009). Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5: 214-226 https://doi.org/10.1016/j.stem.2009.05.021
- Vogel G. (2005). Cell biology. Ready or not? Human ES cells head toward the clinic. Science 308: 1534-1538 https://doi.org/10.1126/science.308.5728.1534
- Wade PA. (2001). Methyl CpG binding proteins: coupling chromatin architecture to gene regulation. Oncogene 20: 3166-3173 https://doi.org/10.1038/sj.onc.1204340
- Wallin E, von Heijne G. (1998). Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7: 1029-1038
- Walsh C. (2006). Posttranslational modification of proteins: expanding nature's inventory (Englewood, Colo., Roberts and Co. Publishers)
- Wang ZX, Teh CH, Chan CM, et al. (2008). The transcription factor Zfp281 controls embryonic stem cell pluripotency by direct activation and repression of target genes Stem Cells 26: 2791-2799 https://doi.org/10.1634/stemcells.2008-0443
- Watt F, Molloy PL. (1988). Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev 2: 1136-1143 https://doi.org/10.1101/gad.2.9.1136
- Wenick AS, Hobert O. (2004). Genomic cis-regulatory architecture and trans-acting regulators of a single interneuron-specifi c gene battery in C. elegans. Dev Cell 6: 757-770 https://doi.org/10.1016/j.devcel.2004.05.004
- Wienholds E, Kloosterman WP, Miska E, et al. (2005). MicroRNA expression in zebrafi sh embryonic development. Science 309: 310-311 https://doi.org/10.1126/science.1114519
- Wienholds E, Plasterk RH. (2005). MicroRNA function in animal development. FEBS Lett 579: 5911-5922 https://doi.org/10.1016/j.febslet.2005.07.070
- Wissmuller S, Kosian T, Wolf M, Finzsch M, Wegner M. (2006). The high-mobility-group domain of Sox proteins interacts with DNA-binding domains of many transcription factors. Nucleic Acids Res 34: 1735-1744 https://doi.org/10.1093/nar/gkl105
- Woolfson A, Ellmark P, Chrisp JS, A Scott M, Christopherson RI. (2006). Th e application of CD antigen proteomics to pharmacogenomics. Pharmacogenomics 7: 759-771 https://doi.org/10.2217/14622416.7.5.759
- Wu CC, MacCoss MJ, Howell KE , Yates JR 3rd. (2003). A method for the comprehensive proteomic analysis of membrane proteins. Nat Biotechnol 21: 532-538 https://doi.org/10.1038/nbt819
- Wu CC, Yates JR 3rd. (2003). The application of mass spectrometry to membrane proteomics. Nat Biotechnol 21: 262-267. https://doi.org/10.1038/nbt0303-262
- Xiao C, Calado DP, Galler G, et al. (2007). MiR-150 controls B cell diff erentiation by targeting the transcription factor c-Myb. Cell 131: 146-159 https://doi.org/10.1016/j.cell.2007.07.021
- Xu P, Guo M, Hay BA. (2004). MicroRNAs and the regulation of cell death. Trends Genet 20: 617-624 https://doi.org/10.1016/j.tig.2004.09.010
- Yoo AS, Greenwald I. (2005). LIN-12/Notch activation leads to microRNA-mediated down-regulation of Vav in C. elegans. Science 310: 1330-1333 https://doi.org/10.1126/science.1119481
- Yu J, Vodyanik MA, Smuga-Otto K, et al. (2007). Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Science 318: 1917-1920 https://doi.org/10.1126/science.1151526
- Yu L, Gaskell SJ, Brookman JL. (1998). Epitope mapping of monoclonal antibodies by mass spectrometry: identification of protein antigens in complex biological systems. J Am Soc Mass Spectrom 9: 208-215 https://doi.org/10.1016/S1044-0305(97)00250-X
- Zola H, Swart B, Nicholson I, et al. (2005). CD molecules 2005: human cell differentiation molecules. Blood 106: 3123-3126 https://doi.org/10.1182/blood-2005-03-1338
- Zola H, Swart BW. (2003). Human leucocyte differentiation antigens. Trends Immunol 24: 353-354 https://doi.org/10.1016/S1471-4906(03)00140-6
Cited by
- Improving the outcomes: developing cancer therapeutics vol.8, pp.1, 2010, https://doi.org/10.2217/fon.11.136
- Germ Cells are Made Semiotically Competent During Evolution vol.9, pp.1, 2010, https://doi.org/10.1007/s12304-016-9258-3
- An integrated network analysis approach to identify potential key genes, transcription factors, and microRNAs regulating human hematopoietic stem cell aging vol.17, pp.6, 2010, https://doi.org/10.1039/d1mo00199j