DOI QR코드

DOI QR Code

Microwave-Accelerated Click Chemistry: Expeditious Synthesis of Novel Triazole-linked Salicylic β-D-O-Glycosides with PTP1B Inhibitory Activity

  • Yang, Jin-Wei (Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology) ;
  • Li, Cui (School of Pharmacy, East China University of Science and Technology) ;
  • He, Xiao-Peng (School of Pharmacy, East China University of Science and Technology) ;
  • Zhao, Hong (Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology) ;
  • Gao, Li-Xin (National Center for Drug Screening, Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences) ;
  • Zhang, Wei (National Center for Drug Screening, Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences) ;
  • Shi, Xiao-Xin (School of Pharmacy, East China University of Science and Technology) ;
  • Tang, Yun (School of Pharmacy, East China University of Science and Technology) ;
  • Li, Jia (National Center for Drug Screening, Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences) ;
  • Chen, Guo-Rong (Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology)
  • 투고 : 2010.08.02
  • 심사 : 2010.09.15
  • 발행 : 2010.11.20

초록

The incorporation of microwave irradiation with the prevalent "click chemistry" is currently of considerable synthetic interest. We describe here the introduction of such laboratorial shortcut into carbohydrate-based drug discovery, resulting in the rapid formation of a series of triazole-linked salicylic $\beta$-D-O-glycosides with biological activities. All "clicked" products were achieved in excellent yields ($\approx$ 90%) within only a quarter. In addition, based on the structural characteristics of the afforded glycomimetics, their inhibitory activities were evaluated toward protein tyrosine phosphatases 1B (PTP1B) and a panel of homologous protein tyrosine phosphatases (PTPs). Docking simulation was also conducted to plausibly propose binding modes of this glycosyl salicylate series with the enzymatic target.

키워드

참고문헌

  1. Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357. https://doi.org/10.1126/science.1059820
  2. Hakomori, S. Glycoconjugate J. 2004, 21, 125. https://doi.org/10.1023/B:GLYC.0000044844.95878.cf
  3. Sacchettini, J. C.; Baum, L. G.; Brewer, C. F. Biochemistry 2001, 40, 3009. https://doi.org/10.1021/bi002544j
  4. Monsigny, M.; Mayer, R.; Roche, A. C. Carbohydr. Lett. 2000, 4, 35.
  5. Feizi, T. Glycoconjugate J. 2001, 17, 553. https://doi.org/10.1023/A:1011022509500
  6. Seeberger, P. H.; Werz, D. B. Nature 2007, 446, 1046. https://doi.org/10.1038/nature05819
  7. Jelinek, R.; Kolusheva, S. Chem. Rev. 2004, 104, 5987. https://doi.org/10.1021/cr0300284
  8. Slovin, S. F.; Keding, S. J.; Ragupathi, G. Immunol. Cell Biol. 2005, 83, 418. https://doi.org/10.1111/j.1440-1711.2005.01350.x
  9. Liang, P. H.; Wu, C. Y.; Greenberg, W. A.; Wong, C. H. Curr. Opin. Chem. Biol. 2008, 12, 86. https://doi.org/10.1016/j.cbpa.2008.01.031
  10. Gruner, S. A. W.; Locardi, E.; Lohof, E.; Kessler, H. Chem. Rev. 2002, 102, 491. https://doi.org/10.1021/cr0004409
  11. Meutermans, W.; Le, G. T.; Becker, B. ChemMedChem 2006, 1, 1164. https://doi.org/10.1002/cmdc.200600150
  12. Ernst, B.; Magnani, J. L. Nat. Rev. Drug Discov. 2009, 8, 661. https://doi.org/10.1038/nrd2852
  13. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem. Int. Ed. 2002, 41, 2596. https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
  14. Mamidyala, S. K.; Finn, M. G. Chem. Soc. Rev. 2010, 39, 1252. https://doi.org/10.1039/b901969n
  15. Lee, L. V.; Mitchell, M. L.; Huang, S. J.; Fokin, V. V.; Sharpless, K. B.; Wong C. H. J. Am. Chem. Soc. 2003, 125, 9588. https://doi.org/10.1021/ja0302836
  16. Wilkinson, B. L.; Bornaghi, L. F.; Houston, T. A.; Innocenti, A.; Vullo, D.; Supuran C. T.; Poulsen S.-A. J. Med. Chem. 2007, 50, 1651. https://doi.org/10.1021/jm061320h
  17. Kajimoto, T.; Node, M. Synthesis 2009, 19, 3179.
  18. Lin, L.; Shen, Q.; Chen, G. R.; Xie, J. Bioorg. Med. Chem. 2008, 16, 9757. https://doi.org/10.1016/j.bmc.2008.09.066
  19. Deng, Q.; Zheng, R.-R.; Ding, N.-N.; He, X.-P.; Chen, G.-R. Bull. Korean Chem. Soc. 2010, 31, 1055. https://doi.org/10.5012/bkcs.2010.31.04.1055
  20. Caddick, S.; Fitzmaurice, R. Tetrahedron 2009, 65, 3325. https://doi.org/10.1016/j.tet.2009.01.105
  21. Kappe, C. O.; Van der Eycken, E. Chem. Soc. Rev. 2010, 39, 1280. https://doi.org/10.1039/b901973c
  22. Xue, J.-L.; Yang, J.-W.; Deng, Q.; He, X.-P.; Chen, G.-R. Bull. Korean Chem. Soc. 2010, 31, 1825. https://doi.org/10.5012/bkcs.2010.31.7.1825
  23. Amblard, F.; Cho, J. H.; Schinazi, R. F. Chem. Rev. 2009, 109, 4207. https://doi.org/10.1021/cr9001462
  24. For a very recent example, see: Dedola, S.; Hughes, D. L.; Nepogodiev, S. A.; Rejzek, M.; Field, R. A. Carbohydr. Res. 2010, 345, 1123. https://doi.org/10.1016/j.carres.2010.03.041
  25. Zhang, S.; Zhang, Z. Y. Drug Discovery Today 2007, 12, 373. https://doi.org/10.1016/j.drudis.2007.03.011
  26. Shrestha, S.; Bhattarai, B. R.; Lee, K.-H.; Cho, H. Bioorg. Med. Chem. 2007, 15, 6535. https://doi.org/10.1016/j.bmc.2007.07.010
  27. Shrestha, S.; Lee, K.-H.; Cho, H. Bull. Korean Chem. Soc. 2004, 25, 1303. https://doi.org/10.5012/bkcs.2004.25.9.1303
  28. Seo, C.; Sohn, J. H.; Oh, H.; Kim, B. Y.; Ahn, J. S. Bioorg. Med. Chem. Lett. 2009, 19, 6095. https://doi.org/10.1016/j.bmcl.2009.09.025
  29. Mereyala, H. B.; Gurrala, S. R. Carbohydr. Res. 1998, 307, 351. https://doi.org/10.1016/S0008-6215(97)10104-5
  30. Zhang, W.; Hong, D.; Zhou, Y.-Y.; Zhang, Y.-N.; Shen, Q.; Li, J.-Y.; Hu, L.-H.; Li, J. Biochim. Biophys. Acta 2006, 1760, 1505. https://doi.org/10.1016/j.bbagen.2006.05.009
  31. Shi, L.; Yu, H. P.; Zhou, Y. Y.; Du, J. Q.; Shen, Q.; Li, J. Y.; Li, J. Acta Pharmacol. Sin. 2008, 29, 278. https://doi.org/10.1111/j.1745-7254.2008.00737.x
  32. Vintonyak, V. V.; Antonchick, A. P.; Rauh, D.; Waldmann, H. Curr. Opin. Chem. Biol. 2009, 13, 272-283. https://doi.org/10.1016/j.cbpa.2009.03.021

피인용 문헌

  1. -Glycoside Hybrids via Click Chemistry as Novel PTP1B Inhibitors vol.29, pp.6, 2011, https://doi.org/10.1002/cjoc.201190228
  2. Microwave-assisted construction of triazole-linked amino acid–glucoside conjugates as novel PTP1B inhibitors vol.35, pp.3, 2011, https://doi.org/10.1039/c0nj00835d
  3. ChemInform Abstract: Microwave-Accelerated Click Chemistry: Expeditious Synthesis of Novel Triazole-Linked Salicylic β-D-O-Glycosides with PTP1B Inhibitory Activity. vol.42, pp.13, 2011, https://doi.org/10.1002/chin.201113200
  4. Bidentate Inhibitors of Protein Tyrosine Phosphatases vol.20, pp.14, 2014, https://doi.org/10.1089/ars.2013.5710
  5. Monosaccharide as a Central Scaffold Toward the Construction of Salicylate-Based Bidentate PTP1B Inhibitors via Click Chemistry vol.32, pp.3, 2010, https://doi.org/10.5012/bkcs.2011.32.3.1000
  6. Creation of 3,4-bis-triazolocoumarin–sugar conjugates via flourogenic dual click chemistry and their quenching specificity with silver(I) in aqueous media vol.67, pp.19, 2010, https://doi.org/10.1016/j.tet.2011.03.068
  7. Disclosing the distinct interfacial behaviors of structurally and configurationally diverse triazologlycolipids vol.346, pp.11, 2010, https://doi.org/10.1016/j.carres.2011.04.038
  8. Click to a focused library of benzyl 6-triazolo(hydroxy)benzoic glucosides: Novel construction of PTP1B inhibitors on a sugar scaffold vol.46, pp.9, 2010, https://doi.org/10.1016/j.ejmech.2011.06.025
  9. CuAAC Click Chemistry Accelerates the Discovery of Novel Chemical Scaffolds as Promising Protein Tyrosine Phosphatases Inhibitors vol.19, pp.15, 2010, https://doi.org/10.2174/092986712800269245
  10. Multifunctional Molecular Therapeutic Agent for Targeted and Controlled Dual Chemo- and Photodynamic Therapy vol.63, pp.15, 2010, https://doi.org/10.1021/acs.jmedchem.0c00893