Effect of Implant Types and Bone Resorption on the Fatigue Life and Fracture Characteristics of Dental Implants

임플란트 형태와 골흡수가 임플란트 피로 수명 및 파절 특성에 미치는 효과에 관한 연구

  • Won, Ho-Yeon (Department of Prosthodontics, College of Dentistry, Dankook University) ;
  • Choi, Yu-Sung (Department of Prosthodontics, College of Dentistry, Dankook University) ;
  • Cho, In-Ho (Department of Prosthodontics, College of Dentistry, Dankook University)
  • 원호연 (단국대학교 치과대학 치과보철학 교실) ;
  • 최유성 (단국대학교 치과대학 치과보철학 교실) ;
  • 조인호 (단국대학교 치과대학 치과보철학 교실)
  • Received : 2010.02.25
  • Accepted : 2010.06.25
  • Published : 2010.06.30

Abstract

To investigate the effect of implant types and bone resorption on the fracture characteristics. 4 types of Osstem$^{(R)}$Implant were chosen and classified into external parallel, internal parallel, external taper, internal taper groups. Finite elements analysis was conducted with ANSYS Multi Physics software. Fatigue fracture test was performed by connecting the mold to the dynamic load fatigue testing machine with maximum load of 600N and minimum load of 60N. The entire fatigue test was performed with frequency of 14Hz and fractured specimens were observed with Hitachi S-3000 H scanning electron microscope. The results were as follows: 1. In the fatigue test of 2 mm exposed implants group, Tapered type and external connected type had higher fatigue life. 2. In the fatigue test of 4 mm exposed implants group, Parallel type and external connected types had higher fatigue life. 3. The fracture patterns of all 4 mm exposed implant system appeared transversely near the dead space of the fixture. With a exposing level of 2 mm, all internally connected implant systems were fractured transversely at the platform of fixture facing the abutment. but externally connected ones were fractured at the fillet of abutment body and hexa of fixture or near the dead space of the fixture. 4. Many fatigue striations were observed near the crack initiation and propagation sites. The cleavage with facet or dimple fractures appeared at the final fracture sites. 5. Effective stress of buccal site with compressive stress is higher than that of lingual site with tensile stress, and effective stress acting on the fixture is higher than that of the abutment screw. Also, maximum effective stress acting on the parallel type fixtures is higher. It is careful to use the internal type implant system in posterior area.

본 연구의 목적은 임플란트 형태 및 골 흡수가 피로 파절에 미치는 효과를 평가하는 것이다. 오스탬 임플란트 4가지 형태 즉 외부 연결 평행형, 내부 연결 평행형, 외부 연결 첨형, 내부 연결 첨형 선정하고, 8개 군으로 분류하였다. 또한 식립 높이에 따른 피로 수명 변화 조사하기 위하여 시료 고정 지그 표면으로부터 고정체를 각각 2mm, 4mm 노출시켜 피로 시험을 시행하였다. 피로 파절 실험은 하중 조건을 최대 하중 600N, 최소 하중 60N으로 하였으며, 스테인리스 스틸로 지그 제작하여 동적 하중 피로 시험기에 연결하고 고정 후 실온에서 14Hz로 실험하였다. 고정체, 지대주 나사 파절 양상, 파절 위치 등 관찰하기 위해 주사전자현미경 사용하였으며, 유한 요소 분석 하여 고정체, 지대주 나사에 나타나는 응력 분포, 파절면 양상 비교 분석하여 다음의 결과를 얻었다. 1. 고정체를 2mm 노출시켜 피로 시험시 첨형 임플란트 피로 수명이 평행형보다 높고, 외부 연결형이 내부 연결형보다 높았다. 2. 고정체를 4mm씩 노출시켜 피로 시험시 평행형 임플란트 피로 수명이 첨형보다 높고, 외부 연결형 임플란트 피로수명이 내부 연결형보다 높았다. 3. 고정체 노출 높이가 2mm인 경우 내부 연결형은 모두 지대주 몸체, 고정체 육각부 접하는 경계부에서 수평으로 피로 파절 발생하였고, 외부 연결형은 고정체 육각부에서 고정체 나사부 방향으로 경사지게 또는 고정체 사공 간부에서 피로 파절 발생하였다. 고정체가 4mm 노출된 경우 임플란트 종류 무관하게 지대주 나사 첨부 고정체 사공간부에서 주로 발생하였다. 4. 피로 파절면 관찰은 모든 군에서 피로 줄무늬를 보였으며 취성파괴 특징인 벽개파면, 연성파괴 특징인 딤플무늬 등이 혼재되어 나타났다. 5. 압축력 받는 협측 유효 응력이 인장력 받는 설측보다 높고, 고정체에 작용하는 유효 응력이 지대주 나사에 작용하는 것보다 높았으며, 고정체에 작용하는 최대 유효 응력은 평행형에서 높았다. 따라서 교합력 많이 받는 구치부에서 내부 연결형 임플란트 식립시 각별한 주의 필요하다고 사료된다.

Keywords

References

  1. Adell R, Lekholm U, Rockler B, et al. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 1981;10:387-416. https://doi.org/10.1016/S0300-9785(81)80077-4
  2. Adell R, Eriksson B, Lekholm U, et al. Long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants 1990;5:347-59.
  3. Albrektsson T, Zarb G, Worthington P, et al. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants 1986;1:11-25.
  4. Albrektsson T, Blomberg S, Branemark A, et al. Edentulousness an oral handicap patient reactions to treatment with jawbone anchored prostheses. J Oral Rehabil 1987;14:503-11. https://doi.org/10.1111/j.1365-2842.1987.tb00746.x
  5. Albrektsson T, Dahl E, Enbom L, et al. Osseointegrated oral implants. A Swedish multicenter study of 8139 consecutively inserted Nobelpharma implants. J Periodontol 1988;59:287-96. https://doi.org/10.1902/jop.1988.59.5.287
  6. Albrektsson T. A multicenter report on osseointegrated oral implants. J Prosthet Dent 60:75-84.
  7. Eckert SE, Meraw SJ, Cal E, et al. Analysis of incidence and associated factors with fractured implants: a retrospective study. Int J Oral Maxillofac Implants 2000;15:662-7.
  8. Schwarz MS. Mechanical complications of dental implants. Clin Oral Implants Res 2000;1:156-8.
  9. Balshi TJ, Hernandez RE, Pryszlak MC, et al. An analysis and management of fractured implants. a clinical report. Int J Oral Maxillofac Implants 1996;11(5):660-5.
  10. Mericske-Stern R, Steinlin Schaffner T, Marti P, et al. Peri-implant mucosal aspects of ITI implants supporting overdentures. A five-year longitudinal study. Clin Oral Implants Res 1994;5:9-18. https://doi.org/10.1034/j.1600-0501.1994.050102.x
  11. Tolman DE, Laney WR. Tissue-integrated prosthesis complications. Int J Oral Maxillofac Implants 1992;7: 477-84.
  12. Jemt T, Lekholm U. Oral implant treatment in posterior partially edentulous jaws: A 5-year follow up report. Int J Oral Maxillofac Implants 1993;8: 635-40.
  13. Choe HC, Lee JK, Chung CH. Analyses of fractured implant fixture after prolonged implantation. Metals and Materials International 2004;10(4):327-40. https://doi.org/10.1007/BF03185981
  14. Ragnar A, Eriksson B, Lekholm U. A longtermfollow up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants 1990;5:347-59.
  15. Takeshita F, Sutsugu T, Higuchi Y, et al. Histologic study of failed hollow implants. Int J Oral Maxillofac Implants 1996;11:245-50.
  16. Zarb GA, Schmitt A. The longitudinal clinical effectiveness of osseointegrated dental implants: the Toronto study. Part I: Surgical results. J Prosthet Dent 1990;63: 451-7. https://doi.org/10.1016/0022-3913(90)90237-7
  17. Rangert B, Krogh PH, Langer B, et al. Bending overload and implant fracture: a retrospective clinical analysis. Int J Oral Maxillofac Implants 1995;10: 326-34.
  18. Levine RA, Clem DS, Wilson TG Jr, et al. Multicenter retrospective analysis of the ITI implant system used for single-tooth replacements: results of loading for 2 or more years. Int J Oral Maxillofac Implants 1999;14:516-20.
  19. Balshi TJ, Hernandez RE, Pryszlak MC, et al. A comparative study of one implant versus two replacing a single molar. Int J Oral Maxillofac Implants 1996;11:372-8.
  20. Cranin AN, Dibling JB, Simons A, et al. Report of the incidence of implant insert fracture and repair of Core-Vent dental implants. Int J Oral Maxillofac Implants 1990;16:184-8.
  21. Lanyon LE, Goodship AE, Pye CJ, et al. Mechanically adaptive bone remodelling. J Biomech 1982;15:141-54. https://doi.org/10.1016/0021-9290(82)90246-9
  22. Heather JC, John KS, Mark CV. Fractures related to occlusal overload with single posterior implants. A clinical report. J Prosthet Dent 2008;99:251-6. https://doi.org/10.1016/S0022-3913(08)00041-3
  23. Quirynen M, Naert I, van Steenberghe D. Fixture design and overload influence marginal bone loss and fixture success in the Branemark system. Clin Oral Implants Res 1992;3:104-11. https://doi.org/10.1034/j.1600-0501.1992.030302.x
  24. Machtei EE, Horwitz J, Peled M, et al. Fracture of dental implants: literature review and report of a case. Implant Dent 2002;11:137-43. https://doi.org/10.1097/00008505-200204000-00014
  25. Naert I, Quirynen M, van Steenberghe D, et al. A study of 589 consecutive implants supporting complete fixed prostheses. Part II: Prosthetic aspects. J Prosthet Dent 1992;68:949-56. https://doi.org/10.1016/0022-3913(92)90557-Q
  26. Piattelli A, Piattelli M, Scarano A, et al. Light and scanning electron microscopic report of four fractured implants. Int J Oral Maxillofac Implants 1998;13: 561-4.
  27. Tosun T, Karabuda C, Cuhadaroglu C. Evaluation of sleep bruxism by polysomnographic analysis in patients with dental implants. Int J Oral Maxillofac Implants 2003;18:286-92.
  28. Patterson EA, Johns RB. Theoretical analysis of the fatigue life of fixture screws in osseointegrated dental implants. Int J Oral Maxillofac Implants 1992;7: 26-33.
  29. Morgan MJ, James DF, Pilliar RM. Fractures of the fixture component of an osseointegrated implant. Int J Oral Maxillofac Implants 1993;8:409-14.
  30. Carlson B, Carlsson GE. Prosthodontic complications in osseointegrated dental implant treatment. Int J Oral Maxillofac Implants 1994;9:90-4.
  31. Sato Y, Shindoi N, Hosokawa R, et al. A biomechanical effect of wide implant placement and offset placement of three implants in the posterior partially edentulous region. J Oral Rehabil 2000;27:15-21. https://doi.org/10.1046/j.1365-2842.2000.00475.x
  32. Brunski JB, Puleo DA, Nanci A. Biomaterials and biomechanics of oral and maxillofacial implants: current status and future developments. Int J Oral Maxillofac Implants 2000;15:15-46.
  33. Taylor TD, Agar JR, Vogiatzi T. Implant prosthodontics: current perspective and future directions. Int J Oral Maxillofac Implants 2000;15:66-75.
  34. Kim JH, Lee JB. A comparative study on the correlation between Korean foods and the fractures of PFG and all ceramic crowns for posterior applications. J Korean Acad Prosthodont 2009;47(2): 156-163. https://doi.org/10.4047/jkap.2009.47.2.156
  35. Bonakdarchiana M, Askaria N, Askarib M. Effect of face form on maximal molar bite force with natural dentition. Archives of Oral Biology 2009;54:201-4. https://doi.org/10.1016/j.archoralbio.2008.11.009
  36. Kenji W. Higuchi, Tiddo F. Implant survival rates in partially edentulous patients: A 3-year prospective multicenter study. J Oral Maxillofac Surgery 1995;53 (3): 264-8. https://doi.org/10.1016/0278-2391(95)90222-8
  37. Binon PP, McHugh MJ. The effect of eliminating implant/abutment rotational misfit on screw joint stability. Int J Prosthodont 1996;9:511-9.
  38. Pfeifer AB, Sendyk CL, Sendyk WR, et al. Fracture of abutment screw supporting a cemented implant retained prosthesis with external hexagon connection: a case report. J Appl Oral Sci 2007;15(2):148-51. https://doi.org/10.1590/S1678-77572007000200015
  39. Rangert B, Jemt T. Forces and moments on Branemark implants. Int J Oral Maxillofac Implants 1989;4:241-7.
  40. Kim YS, Kim CW, Lim YJ, et al. Application of finite element analysis to evaluate implant fracture. J Korean Acad Prosthodont 2006;44(3):295-313.
  41. Park WH, Lee YS. Three dimensional finite element stress analysis of implant prosthesis according to the different fixture locations and angulations. J Korean Acad Prosthodont 2005;43:61-77.
  42. Linkow LI, Donath K, Lemons JE. Retrieval analyses of a blade implant after 231 months of clinical function. Implant Dent 1992;1:37-43.
  43. Khraisat A, Stegaroiu R, Nomura S, et al. Fatigue resistance of two implant/abutment joint designs. J Prosthet Dent 2002;88:604-10. https://doi.org/10.1067/mpr.2002.129384