용액 공정을 통한 도핑된 실리콘 나노입자의 합성과 특성

Synthesis and Characterization of Doped Silicon Nanoparticles by a Solution Route

  • 권하영 (한국생산기술연구원 청정생산기술연구부) ;
  • 임은희 (한국생산기술연구원 청정생산기술연구부) ;
  • 이성구 (한국생산기술연구원 청정생산기술연구부) ;
  • 이경균 (한국생산기술연구원 청정생산기술연구부)
  • Kwon, Ha-Young (Green Chemistry & Manufacturing System Division, Korea Institute of Industrial Technology (KITECH)) ;
  • Lim, Eun-Hee (Green Chemistry & Manufacturing System Division, Korea Institute of Industrial Technology (KITECH)) ;
  • Lee, Sung-Koo (Green Chemistry & Manufacturing System Division, Korea Institute of Industrial Technology (KITECH)) ;
  • Lee, Kyeong-K. (Green Chemistry & Manufacturing System Division, Korea Institute of Industrial Technology (KITECH))
  • 투고 : 2010.08.27
  • 심사 : 2010.10.04
  • 발행 : 2010.12.10

초록

용액공정을 이용하여 표면에 알킬기를 도입하고, 붕소(boron) 또는 인(phosphorous)으로 도핑된 실리콘 나노 입자를 합성하였다. 나노 입자의 합성 여부 및 입자크기는 핵자기공명분광기(NMR), 적외선분광기(FT-IR), 자외선가시광선분광기(UV-Vis), 인광분광기(PL)를 이용하여 분석하였다. 마이크로웨이브 소결기를 이용하여 표면의 알킬기를 제거하고, 결정성을 갖는 필름을 제작하였다. 필름의 조각은 $200{\mu}m$ 정도의 크기를 가지며 큐빅구조를 가지고 있다는 것을 전자주사현미경(FE-SEM)과 투과전자현미경(FR-TEM)으로 확인할 수 있었다. 필름의 전도도는 도핑 타입을 통해 조절할 수 있었다.

We have synthesized boron (or phosphorous) doped silicon nanoparticles (Si-NPs) by a solution process. The surfaces of the Si-NPs were terminated with various alkyl groups to form a protecting layer. The Si-NPs were characterized by UV-Vis, PL, FTIR, and NMR. Through a microwave sintering process, the crystalline thin films of the Si-NPs were prepared by removing the surface alkyl groups. The TEM and SEM images reveal that contiguous films as large as $200{\mu}m$ in diameter were formed with a cubic structure. The electrical conductivity of the Si film was controlled by a doping type.

키워드

참고문헌

  1. T. I. Kamins, R. S. Williams, Y. Chen, Y. L. Chnag, and Y. A. Chang, Appl. Phys. Lett., 76, 562 (2000). https://doi.org/10.1063/1.125852
  2. R. Lechner, A. Stegner, R. Pereira, R. Dietmueller, M. Brandt, A. Ebbers, M. Trocha, H. Wiggers, and M. Stutzmann, J. Appl. Phys., 104, 053701 (2008). https://doi.org/10.1063/1.2973399
  3. J. R. Heath, Science, 258, 1131 (1992). https://doi.org/10.1126/science.258.5085.1131
  4. A. Kornowski, M. Giersig, R. Vogel, A. Chemseddine, and H. Weller, Adv. Mater., 5, 634 (1993). https://doi.org/10.1002/adma.19930050907
  5. J. P. Wilcoxon and G. A. Samara, Appl. Phys. Lett., 74, 3164 (1999). https://doi.org/10.1063/1.124096
  6. N. Shirahata, S. Furumi, and Y. Sakka, J. Cryst. Growth, 311, 634 (2009). https://doi.org/10.1016/j.jcrysgro.2008.09.084
  7. C. S. Yang, R. A. Bley, S. M. Kauzlarich, H. W. H. Lee, and G. R. Delgado, J. Am. Chem. Soc., 121, 5191 (1999). https://doi.org/10.1021/ja9828509
  8. T. W. Kim, C. H. Cho, B. H. Kim, and S. J. Park, Appl. Phys. Lett., 88, 123102 (2006). https://doi.org/10.1063/1.2187434
  9. R. K. Baldwin, K. A. Pettigrew, E. Ratai, M. P. Augustine, and S. M. Kauzlarich, Chem. Commun., 1822 (2002)
  10. B. Streetman, Solid State Elect. Devices, 4th Ed, 86, PRENTICE- HALL, Englewood cities Cliffs, New Jersey (1995).