The Effect of Lubricity Improvement by Biodiesel Components

바이오디젤 구성성분에 따른 윤활성향상 효과

  • Lim, Young-Kwan (Research Center, Korea Institute of Petroleum Management) ;
  • Park, So-Ra (Research Center, Korea Institute of Petroleum Management) ;
  • Kim, Jong-Ryeol (Research Center, Korea Institute of Petroleum Management) ;
  • Yim, Eui-Soon (Research Center, Korea Institute of Petroleum Management) ;
  • Jung, Choong-Sub (Research Center, Korea Institute of Petroleum Management)
  • 임영관 (한국석유관리원 연구센터) ;
  • 박소라 (한국석유관리원 연구센터) ;
  • 김종렬 (한국석유관리원 연구센터) ;
  • 임의순 (한국석유관리원 연구센터) ;
  • 정충섭 (한국석유관리원 연구센터)
  • Received : 2010.08.10
  • Accepted : 2010.09.10
  • Published : 2010.12.10

Abstract

Biodiesel produced from the reaction of methanol and triglyceride which is the main component of animal fats and vegetable oils is known for remarkable lubricity. In this study, the lubricity of 3 kinds of biodiesel came from vegetable oils such as soybean oil, palm oil, and perilla oil and 2 kind of biodiesel which were produced from beef tallow and pork lard were analyzed using HFRR (High frequency reciprocating rig). In HFRR test result, the lubricity of perilla and soybean's biodiesel was higher than other biodiesels. After analysis of biodiesel components by GC-MS and determination of the lubricity of pure biodiesel components using HFRR, it was found that a higher olefin content and long alkyl chaining biodiesel had an excellent lubricity property.

동식물 유지의 주성분인 트리글리세라이드를 메탄올과 반응시켜 생산된 바이오디젤은 기존 석유디젤에 비해 윤활성이 뛰어난 것으로 알려져 있다. 본 연구에서는 대두유, 팜유, 들기름으로부터 합성된 식물성 바이오디젤과 우지, 돈지로부터 생산된 동물성 바이오디젤의 윤활성을 측정한 결과 대두유와 들기름으로부터 합성된 바이오디젤은 다른 바이오디젤보다 윤활성이 높게 측정되었다. 순수한 바이오디젤의 윤활성과 이들 바이오디젤의 구성분자 조성을 가스크로 마토그래피-질량분석기를 이용해 분석한 결과, 올레핀 함량이 높고 분자길이가 긴 바이오디젤일수록 윤활성 향상효과가 뛰어난 것을 확인할 수 있었다.

Keywords

References

  1. C. S. Lee and S. W. Park, Fuel, 81, 2417 (2002). https://doi.org/10.1016/S0016-2361(02)00158-8
  2. K. Jung, J. Choi, S. Moon, and K. Chung, Journal of the KSTLE, 24, 264 (2008).
  3. W. Danping and H. A. Spikes, Wear, 119, 217 (1986).
  4. Business act for quality standard, inspection method and inspection fee of petroleum product, Ministry of Commerce, Industry and Energy 2006-42.
  5. S. Gryglewicz and F. A. Oko, Ind. Eng. Chem. Res., 44, 1640 (2005). https://doi.org/10.1021/ie049454l
  6. A. M. Omer, Renewable Sustainable Energy Rev., 12, 2265 (2008). https://doi.org/10.1016/j.rser.2007.05.001
  7. D. Antoni, V. V. Zverlow, and W. H. Schwarz, Appl. Microbiol. Biotechnol., 77, 23 (2007). https://doi.org/10.1007/s00253-007-1163-x
  8. C. S. Lee, S. W. Park, and S. I. Kwon, Energy Fuels, 19, 2201 (2008).
  9. Y. K. Lim, S. C. Shin, E. S. Yim, and H. O. Song, J. Korean Ind. Eng. Chem., 19, 137 (2008).
  10. Y. K. Hong and W. H. Hong, Korean Chem. Eng. Res., 45, 424 (2007).
  11. N. M. Ribeiro, A. C. Pinto, C. M. Quintella, G. O. da Rocha, L. S. G. Teixeira, L. L. N. Guarieiro, M. D. C. Rangel, M. C. C. Veloso, M. J. C. Rezende, R. S. da Cruz, A. M. de Oliveira, E. A. Torres, and J. B. de Andrade, Energy Fuels, 21, 2433 (2007). https://doi.org/10.1021/ef070060r
  12. F. Ma and M. A. Hanna, Bioresour. Technol., 70, 1 (1999). https://doi.org/10.1016/S0960-8524(99)00025-5
  13. http://www.global-greenhouse-warming.com/biodiesel-from-tallow.html
  14. J. Y. Park, D. K. Kim, J. P. Lee, S. C. Park, Y. J. Kim, and J. S. Lee, Bioresour. Technol., 99, 1196 (2008). https://doi.org/10.1016/j.biortech.2007.02.017
  15. G. Knothe and K. R. Steidley, Energy Fuels, 19, 1192 (2005). https://doi.org/10.1021/ef049684c
  16. Y. K. Lim, D. Kim, and E. S. Yim, J. Korean Ind. Eng. Chem., 20, 208 (2009).
  17. B. R. Moser, Energy Fuels, 22, 4301 (2008). https://doi.org/10.1021/ef800588x