Evaluation on the Possibility of Preparation of Nanosized Alumina Powder under W/O Emulsion Method Using Homogenizer

Homogenizer를 사용한 W/O 에멀젼법하에 나노크기 알루미나 분체 제조 가능성 평가

  • Lee, Yoong (Department of Chemical Engineering, College of Engineering, Dankook University) ;
  • Hahm, Yeong-Min (Department of Chemical Engineering, College of Engineering, Dankook University)
  • 이융 (단국대학교 화학공학과) ;
  • 함영민 (단국대학교 화학공학과)
  • Received : 2010.01.18
  • Accepted : 2010.03.18
  • Published : 2010.10.10

Abstract

Under W/O emulsion method using a homogenizer, ${\alpha}$-alumina powder was prepared to evaluate the effects of experimental conditions on its properties, such as particle shape, extent of aggregation, average particle size and distribution. The experimental parameters were the change of type, quantity and composition of emulsifiers as well as the change of O : W volumetric ratio and agitation rate. As results, in the case of the use of single surfactant of SP80, sphere-like particles could be prepared and the average particle size was hardly affected by the agitation speed more than 16000 rpm regardless of SP80 quantity used. When the extent of aggregation among sphere-like particles prepared using $HLB_m$ = 5 of [SP80 & TW80] was compared with that prepared using SP80 at the same vol% surfactant and agitation speed, the former showed more or less low aggregation phenomena and average particle size was slightly reduced. In addition, the fraction of nano-sized particles with low aggregation was increased by the use of 0.1 vol% n-butanol, as a co-surfactant, with $HLB_m$ = 5 of [SP80 & TW80].

W/O 에멀젼법하에 homogenizer를 사용하여 ${\alpha}$-알루미나 분체 제조 시 O : W 부피비, 교반속도, 계면활성제 사용량과 조성 및 종류 등의 변화에 의하여 분체의 입자형상, 응집성, 평균입경과 입도분포 등의 변화를 분석하였다. 계면활성제는 비이온 계면활성제가 사용되었고 단일 및 혼합계면활성제로는 SP80 및 [SP80 & TW80]을 사용하였고 보조계면활성제로는 n-부탄올을 사용하였다. SP80을 사용하였을 경우, 분체의 입자형상은 구형에 근접하였고 평균입경은 주어진 O : W 부피비 변화 및 16000 rpm 이상의 교반속도에서 큰 차이를 보이지 않았다. [SP80 & TW80]을 사용하였을 경우, 구형에 가까운 분체의 입자간 응집 및 합체현상은 $HLB_m$ = 5일 때 낮았고 평균입경은 단일계면활성제를 사용하였을 때 비하여 다소 감소하였다. $HLB_m$ = 5인 [SP80 & TW80]와 함께 0.1 vol% n-부탄올을 사용하였을 경우, 입자간 응집성이 상대적으로 낮고 나노크기의 입도를 갖는 분체 분율을 증가시킬 수 있었다.

Keywords

References

  1. H. Liu, G. Ning, Z. Gan, and Y. Lin, Mater. Res. Bull., 44, 785 (2009). https://doi.org/10.1016/j.materresbull.2008.09.018
  2. H. Liu, G. Ning, Z. Gan, and Y. Lin, Mater. Letters, 62, 1685 (2008). https://doi.org/10.1016/j.matlet.2007.09.059
  3. Y. Touhami, D. Rana, V. Hornof, and G. H. Neale, J. Colloid Interface Sci., 239, 226 (2001). https://doi.org/10.1006/jcis.2001.7547
  4. W. J. Tseng and K. H. Teng, Mater. Sci. Eng., A318, 102 (2001).
  5. M. R. Porter and R. Maurice, Handbook of Surfactants, 2nd Edn., p75, Chapman and Hall Ltd, U.S.A. (1994).
  6. B. Siladitya, M. Chatterjee, and D. Ganguli, J. Sol-Gel Sci. Tech., 15, 271 (1999). https://doi.org/10.1023/A:1008745210805
  7. M. Chatterjee, M. K. Nuskar, B. Siladitya, and D. Ganguli, J. Mater. Res., 15, 176 (2000). https://doi.org/10.1557/JMR.2000.0029
  8. Y. Lee, Y. M. Hahm, and D. H. Lee, J. Ind. Eng. Chem., 10, 826 (2004).
  9. Y. Lee, Y. M. Hahm, and D. H. Lee, J. Ind. Eng. Chem., 11, 27 (2005).
  10. Y. Lee and Y. M. Hahm, J. Korean Ind. Eng. Chem., 14, 1038 (2003).
  11. L. Dai, W. Li, and X. Hou, Colloids & Surfaces A: Physicochem. Eng. Aspects, 125, 27 (1997). https://doi.org/10.1016/S0927-7757(96)03859-9
  12. S. Y. Shiao, V. Chhabra, A. Patist, M. L. Free, P. D. T. Huibers, A. Gregory, S. Patel, and D. O. Shah, Adv. Colloid. Interface Sci., 74, 1 (1998). https://doi.org/10.1016/S0001-8686(97)00005-5
  13. W. Wang and J. C. T. Kwak, Colloids Surfaces A: Physicochem. Eng. Aspects, 156, 95 (1999). https://doi.org/10.1016/S0927-7757(99)00062-X
  14. A. Khan and E. F. Marques, Current Opinion in Colloid & Interface Science, 4, 402 (2000).
  15. P. Plucinski and J. Reitmeir, Colloids & Surfaces A: Physicochem. Eng. Aspects, 97, 157 (1995). https://doi.org/10.1016/0927-7757(95)03079-S
  16. K. Shinoda, J. Colloid. Inter. Sci., 24, 4 (1967). https://doi.org/10.1016/0021-9797(67)90270-6
  17. C. L. Casson, I. Carmona, L. Fortney, A. Samii, R. S. Schechter, W. H. Wade, U. Weerasooriya, V. Weerasooriya, and S. Yiv, J. Disp. Sci. Techn., 8, 137 (1987). https://doi.org/10.1080/01932698708943598
  18. A. C. John and A. K. Rakshit, Colloids & Surfaces A: Physicochem. Eng. Aspects, 95, 201 (1995). https://doi.org/10.1016/0927-7757(94)03014-Q
  19. J. Lang, N. Lalem, and R. Zana, J. Phys. Chem., 95, 9533 (1991). https://doi.org/10.1021/j100176a090
  20. A. Caponetti, A. Lizzio, R. Triolo, W. L. Griffith, and J. S. Johnson, Langmuir, 8, 1554 (1992). https://doi.org/10.1021/la00042a011
  21. E. A. Lissi and D. Engel, Langmuir, 8, 452 (1992). https://doi.org/10.1021/la00038a023
  22. B. Siladitya, M. Chatterjee, and D. Ganguli, J. Sol-Gel Sci. Technol., 15, 271 (1999). https://doi.org/10.1023/A:1008745210805