Combustion Properties of the Quercus variabilis and Zelkova serrata Dried at Room Temperature (II)

자연 건조된 굴참나무와 느티나무 목재의 연소성(II)

  • Chung, Yeong-Jin (Department of Fire and Disaster Prevention, Kangwon National University) ;
  • Jin, Eui (Fire & Disaster Prevention Research Center, Kangwon National University)
  • 정영진 (강원대학교 소방방재공학과) ;
  • 진의 (강원대학교 소방방재연구센터)
  • Received : 2010.06.22
  • Accepted : 2010.07.09
  • Published : 2010.08.10

Abstract

Wood has an essential drawback such as high combustion ability. The purpose of this paper is to examine the combustion properties of the quercus variabilis and zelkova serrata dried at room temperature. The cone calorimeter (ISO 5660-1) was used to determine the heat release rate (HRR) and fire smoke index, as well as CO/$CO_2$ production and smoke obscuration. The total heat release (THR), $140.2\;MJ/m^2$ of the quercus variabilis under an external $50\;kW/m^2$ was high in comparison with THR $85.7\;MJ/m^2$ for the zelkova serrata. Furthermore, the quercus variabilis has high total smoke production (TSP), $3.50\;m^2$ compared with TSP $0.65\;m^2$ of zelkova serrata. Thease results depend on the bulk density of tested wood species. In addition, the CO/$CO_2$ production ratio of zelkova serrata and quercus variabilis was measured as 0.053, 0.043, respectively. Also, zelkova serrata showed an increase of fire-resistance attributed to char formation compared with that of quercus variabilis.

목재는 연소성이 높은 본질적인 결함을 가지고 있다. 본 연구의 목적은 자연 건조된 굴참나무와 느티나무의 연소성질을 시험하였다. 열방출율과 CO/$CO_2$ 발생과 연기차폐와 같은 연기지수를 콘칼로리미터(ISO 5660-1)를 이용하여 측정하였다. $50kW/m^2$의 외부 열유속하에서 굴참나무의 총 방출열량, THR ($140.2MJ/m^2$)은 느티나무의 THR ($85.7MJ/m^2$) 과 비교하여 높게 나타났다. 그리고 굴참나무의 총 연기발생량, $TSP3.50m^2$는 느티나무의 $TSP0.65m^2$에 비하여 높게 나타났다. 이들 결과는 시험목의 체적밀도에 의존함을 보여준다. CO/$CO_2$ 발생비는 굴참나무와 느티나무가 각각 0.053, 0.043을 나타내었다. 또한 느티나무가 굴참나무에 비해 숯생성으로 인한 증대된 연소 억제성을 보여주었다.

Keywords

References

  1. N. Boonmee and J. G. Quintiere, Twenty-ninth Symposium (international) on combustion, The Combustion Institute, 29, 289 (2002).
  2. M. M. Hirschler, Advances in Combustion Toxicology, 2, 229 (1990).
  3. F. Shafizadeh and W. F. DeGroot, Combustion characteristics of cellulosic fuels, edds F. Shafizadeh, K.V. Sarkenen and D. A. Tillman, Thermal Uses and Properties of Carbohydrates and Lignins, Academic Press, New York, U.S.A. (1976).
  4. D. A. Tillan, Wood as an energy resource, Academic Press, New York, U.S.A. (1978)
  5. M. J. Spearpoint, Predicting the ignition and burning rate of wood in the cone calorimeter using an intergral model, 30, NIST GCR 99-775, U.S.A. (1999).
  6. V. Babrauskas, The SFPE Handbook of Fire Protection Engineering, Fourth ed., National Fire Protection Association, Massatusetts, U.S.A. (2008).
  7. H. C. Tran and R. H. White, Fire and Materials, 16, 197 (1992). https://doi.org/10.1002/fam.810160406
  8. J. B. Carle and J. L. Brown, Wood as a source of solid fuel, ed. G.S. Watt, a review, New Zealand Forest Service, Auckland. NZ. (1976).
  9. N. P. Cheremisinoff, Wood for energy production, Ann Arbor Science Publishers, Ann Arbor, Mich., U.S.A. (1980).
  10. F. M. Pearce, Y. P. Khanna, and D. Raucher, Thermal Characterization of Polymeric Materials, Chap. 8, Academic Press, New York, U.S.A. (1981).
  11. V. Babrauskas, New Technology to reduce Fire Losses and Costs, eds S. J. Grayson, and D. A. Smith, Elsevier Appied Science Publisher, London, UK. (1986).
  12. M. Hirschler, Thermal decomposition and chemical composition, 239, American Chemical Society Symposium Series 797 (2001).
  13. N. Boonme and J. G. Quintiere, Thirtieth Symposioum (International) on combustion, The Combustion Institute, 30, 2303 (2005). https://doi.org/10.1016/j.proci.2004.07.022
  14. E. Mikkola, Fire Safety Science, Proceedings of the Third International Symposium, 547, Elsevier, Applied Science, London (1991).
  15. J. G. Quintiere, A Semi-quantitative Model for the Burning Rate of Solid Materials, NISTIR 4840, National Institute of Standards and Technology, Gaithersburg, M.D., U.S.A. (1992).
  16. M. J. Spearpoint and G. J. Quintiere, Combustion and Flame, 123, 308 (2000). https://doi.org/10.1016/S0010-2180(00)00162-0
  17. H. J. Park and H. Kim, J. of Korean Institute of Fire Sci. & Eng., 18, 86 (2004).
  18. Y. J. Chung, Journal of Korean Forest Society, 98, 319 (2009).
  19. ISO 5660-1, Genever (2002).
  20. EN 13823 (2002).
  21. W. T. Simpso, Wood Handbook-Wood as an Engineering Material, Chap.12, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsine, U.S.A. (1987).
  22. Y. J. Chung and I. K. Kwon, Journal of Korean Forest Society, 99, 96 (2010).
  23. V. Babrauskas, doi: 1002/fam. 810080206, Fire and Materials, 8, 81 (1984). https://doi.org/10.1002/fam.810080206
  24. V. Babrauskas and S. J. Grayson, Heat release in Fires, 644, E & FN Spon (Chapman and Hall), London, UK. (1992).
  25. J. G. Quintire, Principles of Fire Behavior, Chap. 5, Cengage Learning, Delmar, U.S.A. (1998).
  26. M. Delichatsios, B. Paroz, and A. Bhargava, Fire Safety Journal, 38, 219 (2003). https://doi.org/10.1016/S0379-7112(02)00080-2
  27. T. R. Hull and K. T. Paul, Fire Safety Journal, 42, 340 (2007). https://doi.org/10.1016/j.firesaf.2006.12.006