DSSC Efficiency Characteristics by Annealing Temperature and Thickness of Electrodes

전극의 두께와 소성 온도에 따른 DSSC의 효율 특성

  • Hwang, Ki-Seob (Department of Chemical Engineering, Keimyung University) ;
  • Ha, Ki-Ryong (Department of Chemical Engineering, Keimyung University)
  • Received : 2010.03.24
  • Accepted : 2010.06.21
  • Published : 2010.08.10

Abstract

The photovoltaic performance of DSSCs fabricated with different electrode thickness and different annealing temperature with the P25 $TiO_2$ and the Dyesol $TiO_2$ was measured. Thickness change of $TiO_2$ electrodes was measured using cross-sectional FE-SEM before and after annealing. Photovoltaic efficiencies of DSSCs were also measured by changing annealing temperature of platinum (Pt) paste on the counter electrode. Photovoltaic performances of DSSCs made with one layer of P25 (${\sim}20.4\;{\mu}m$) and one layer of Dyesol $TiO_2$ (${\sim}9.1\;{\mu}m$) annealed at $500^{\circ}C$ for 30 min. showed highest efficiencies of 3.8% and 5.8%, respectively.

P25와 Dyesol $TiO_2$ (Titanium dioxide)를 사용하여 두께와 소성 온도가 다른 전극을 제조하여 염료감응형 태양전지(Dye Sensitized Solar Cell, DSSC)를 제조한 후 광 변환 효율을 측정하였다. 소성 전 후의 $TiO_2$ 작업 전극의 두께 변화는 FE-SEM을 사용하여 시편의 cross section을 확인하여 비교하였다. 또한 상대전극인 Pt의 소성 온도에 따른 DSSC의 효율 변화도 측정하였다. P25를 활용한 DSSC는 doctor blade로 1층으로 도포 후, $500^{\circ}C$에서 30 min 동안 소성한 작업 전극(${\sim}20.4{\mu}m$)과 $350^{\circ}C$에서 30 min 동안 소성한 Pt 상대 전극으로 제조한 셀이 3.8%의 광효율을 나타내었다. Dyesol $TiO_2$를 활용하여 1층으로 도포 후, $500^{\circ}C$에서 30 min 동안 소성한 작업전극(${\sim}9.1\;{\mu}m$)과 $450^{\circ}C$에서 30 min 동안 소성한 Pt 상대 전극으로 제조한 셀이 5.8%의 광 효율을 나타냄을 알았다.

Keywords

References

  1. S. H. Jung, K. J. Hwang, S. W. Kang, H. G. Jeong, S. I. Jeong, and J. W. Lee, J. Korea Ind. Eng. Chem., 20, 227 (2009).
  2. B. O'Reagan and M. Grazel, Nature (London), 335, 739 (1991).
  3. C. Huanga, Y. Hsua, J. Chena, V. Suryanarayanan, K. Leeb, and K. Ho, Sol. Energ. Mat. Sol. C., 90, 2391 (2006). https://doi.org/10.1016/j.solmat.2006.03.012
  4. A. Hauch and A. Georg, Electrochim. Acta, 46, 3457 (2001). https://doi.org/10.1016/S0013-4686(01)00540-0
  5. N. Koumura, Z. S. Wang, S. Mori, M. Miyashita, E. Suzuki, and K. Hara, J. Am. Chem. Soc., 128, 14256 (2006). https://doi.org/10.1021/ja0645640
  6. S. Lu, R. Koeppe, S. Gunes, and N. S. Sariciftci, Sol. Energ. Mat. Sol. C., 91, 1018 (2007).
  7. K. M. Lee, V. Surynarayanan, and K. G. Ho, Sol. Energ. Mat. Sol. C., 91, 1416 (2007). https://doi.org/10.1016/j.solmat.2007.03.007
  8. W. Jarernboon, S. Pimanpang, S. Maensiri, E. Swatsitang, and V. Amornkitbamrung, Thin Solid films, 517, 4663 (2009). https://doi.org/10.1016/j.tsf.2009.02.129
  9. G. K. Kiema, M. J. Colgan, and M. J. Brett, Sol. Energ. Mat. Sol. C., 85, 321 (2005). https://doi.org/10.1016/j.solmat.2004.05.001
  10. D. Y. Lee and C. W. Chung, Appl. Chem., 12, 189 (2008).
  11. T. H. Meen, C. H. Huang, Y. W. Chen, L. W. Ji, C. C. Diao, and H. H. Chung, Key Eng. Mater., 368, 1716 (2008).
  12. Q. Shen and T. Toyoda, Thin Solid Films, 438, 167 (2003). https://doi.org/10.1016/S0040-6090(03)00728-4
  13. Y. S. Kim, B. J. Yoo, R. Vittal, Y. H. Lee, N. G. Park, and K. J. Kim, J. Power Source, 175, 914 (2008). https://doi.org/10.1016/j.jpowsour.2007.09.112
  14. Y. S. Kim, C. H. Yoon, K. J. Kim, and Y. H. Lee, J. Vac. Sci. Technol. A, 25, 1219 (2007). https://doi.org/10.1116/1.2742392
  15. J. K. Lee, B. H. Jeong, S. I. Jang, Y. G. Kim, Y. W. Jang, S. B. Lee, and M. R. Kim, J. Ind. Eng. Chem., 15, 724 (2009). https://doi.org/10.1016/j.jiec.2009.09.053
  16. U. O. Krasovec, M. Berginc, M. Hočevar, and M. Topic, Sol. Energ. Mat. Sol. C., 93, 379 (2009). https://doi.org/10.1016/j.solmat.2008.11.012
  17. C. Y. Huang, Y. C. Hsu, J. G. Chen, V. Saryanaryanan, K. M. Lee, and K. C. Ho, Sol, Energ. Mat. Sol. C., 90, 2391 (2006). https://doi.org/10.1016/j.solmat.2006.03.012
  18. L. Yang, Z. Zhang, S. Fang, X. Gao, and M. Obata, Solar Energy, 81, 717 (2007) https://doi.org/10.1016/j.solener.2006.10.001
  19. A. I. Kontos, A. G. Kontos, D. S. Tsoukleris, M. C. Bernard, N. Spyrellis, and P. Falaras, J. Mat. Proc. Tech., 196, 243 (2008). https://doi.org/10.1016/j.jmatprotec.2007.05.051
  20. J. H. Yoon, S. R. Jang, R. Vittal, J. Lee, and K. J. Kim, J. Photochem. Photobio. A: Chemistry, 180, 184 (2006). https://doi.org/10.1016/j.jphotochem.2005.10.013
  21. G. P. Kalaignan, M. S. Kang, and Y. S. Kang, Solid State Ionics, 177, 1091 (2006). https://doi.org/10.1016/j.ssi.2006.03.013
  22. E. Joanni, R. Savu, M. de Sousa Goes, P. R. Bueno, J. N. de Freitas, A. F. Nogueira, E. Longo, and J. A. Varela, Scripta Materialia, 57, 277 (2007). https://doi.org/10.1016/j.scriptamat.2007.03.051
  23. U. Schmid and H. Sceidel, Thin Solid Films, 516, 898 (2008). https://doi.org/10.1016/j.tsf.2007.04.128
  24. J. Ovenstone and K. Yanagisawa, Chem. Mater., 11, 2770 (1999). https://doi.org/10.1021/cm990172z