Abstract
The purpose of LiDAR ground classification is to archive both goals which are acquiring confident ground points with high precision and describing ground shape in detail. In spite of many studies about developing optimized algorithms to kick out this, it is very difficult to classify ground points and describing ground shape by airborne LiDAR data. Especially it is more difficult in a dense forested area like Korea. Principle misclassification was mainly caused by complex forest canopy hierarchy in Korea and relatively coarse LiDAR points density for ground classification. Unfortunately, a lot of LiDAR surveying performed in summer in South Korea. And by that reason, schematic LiDAR points distribution is very different from those of Europe. So, this study propose enhanced ground classification method considering Korean land cover characteristics. Firstly, this study designate highly confident candidated LiDAR points as a first ground points which is acquired by using big roller classification algorithm. Secondly, this study applied weighted gradient kernel(WGK) algorithm to find and include highly expected ground points from the remained candidate points. This study methods is very useful for reconstruct deformed terrain due to misclassification results by detecting and include important terrain model key points for describing ground shape at site. Especially in the case of deformed bank side of river area, this study showed highly enhanced classification and reconstruction results by using WGK algorithm.
항공레이저측량을 통한 지형 분류작업은 분류 정확도의 확보와 세밀한 지형 표현의 두 목표를 동시에 만족해야 한다. 이 두 목표를 달성하기 위한 자동분류 처리에 연구로서 노이즈가 많은 지형분류 결과로부터 필터링을 통한 품질향상 연구가 다수 있었으나 한국과 같이 삼림이 울창하고 지표면 투과율이 낮은 환경에서의 항공레이저측량 결과 적용 시 관목 및 교목 하층이 지면으로 분류되는 오류가 많았다. 이에 본 연구는 정확도가 높고 점밀도가 낮은 1차 지형분류 결과를 기반으로 아직 지형으로 등록되지 않은 LiDAR 지형 분류 후보 점군들로부터 세밀 지형 표현에 필요한 점들을 추출하는 기법으로 점분류 처리절차를 개선하였다. 주변 지형 포인트의 가중치를 부여하여 경사 (gradient) 계산을 통해 미추출 LiDAR 점군들로부터 지형 표현 점들을 분류하는 본 알고리즘은 특히 능선부분의 사라진 특징을 찾아내거나 무너진 논둑을 복원하는 등 최소의 점들로 중요한 지형 요소점(terrain model key points)을 놓치지 않고 세밀하게 표현하는데 효과적이다. 이 알고리즘을 통해 추출한 점들과 1차 지형분류 결과를 결합하여 지형분류최적화 방법을 제안하였다.