방사선수술을 위한 노발리스 품질관리 프로토콜 개발

Development of Novalis Quality Assurance Protocol for Radiosurgery

  • 이동준 (인제대학교 의과대학 신경외과학교실) ;
  • 이경남 (가톨릭대학교 의과대학 의공학교실) ;
  • 이석 (고려대학교 의과대학 방사선종양학교실) ;
  • 이상훈 (관동대학교 의과대학 방사선종양학교실) ;
  • 김대홍 (연세대학교 보건과학대학 방사선학과)
  • Lee, Dong-Joon (Department of Neurosurgery, College of Medicine, Inje University) ;
  • Lee, Kyung-Nam (Department of Biomedical Engineering, The Catholic University of Korea College of Medicine) ;
  • Lee, Suk (Department of Radiation Oncology, College of Medicine, Korea University) ;
  • Lee, Sang-Hoon (Department of Radiation Oncology, College of Medicine, Kwandong University) ;
  • Kim, Dae-Hong (Department of Radiological Science, College of Health Science, Yonsei University)
  • 투고 : 2010.02.22
  • 심사 : 2010.03.16
  • 발행 : 2010.03.31

초록

국내에서 방사선치료를 위한 선형가속기 품질관리 프로토콜은 많이 개발되어 왔지만 선형가속기를 기반으로 하는 방사선수술장비의 품질관리 프로토콜 개발은 현재까지 거의 이루어져 있지 않고 있다. 이에 본 연구는 선형가속기 기반 일체형 방사선수술장비인 노발리스의 정확도 및 정밀도를 유지하기 위하여 일간, 주간, 월간, 연간에 주기적으로 시행하여야 하는 노발리스 품질관리 프로토콜을 개발 하고 품질관리 상태의 종합적 확인을 할 수 있는 해부학적 팬텀을 제작하였다. 이를 위하여 국내외의 선형가속기를 이용하는 방사선수술 품질관리 프로토콜의 수집 및 분석을 통해 필수적인 품질관리항목과 각 항목의 허용치를 정하였다. 노발리스 품질관리 항목은 기계적 정확도 부분과 방사선 전달 부분의 2가지로 분리하고 기계적 정확도 부분은 방사선발생 장치부, 보조장치부, 그리고 미세다엽 시준기부의 3가지 부분으로 방사선 전달부분은 치료 중심점 평가와 선량학적 평가의 2가지 부분으로 나누어 작성하였다. 최종적으로 노발리스 품질관리 유지를 위하여 시행하여야 하는 일간, 주간, 월간, 연간의 노발리스 품질관리 항목 표를 완성하였다. 완성된 노발리스 품질관리항목 표는 노발리스가 방사선수술에 적합한 정확도 및 정밀도를 유지하는데 필요한 지표로서 기여 할 수 있을 것이라 생각된다.

In Republic of Korea, there are many Quality Assurance protocol for general radiation treatment machine such as linac. However, Quality Assurance protocol for radiosurgery treatment system is not ready perfectly. One of the radiation treatment machine for radiosurgery, novalis system needs to suitable Quality Assurance protocol for using it right way during radiation treatment and maintaining suitable accuracy for daily, weekly, monthly and annually periods. Therefore, in this article, we develop Quality Assurance protocol for novalis system. We collected and analysed domestic and foreign novalis Quality Assurance protocol. After that, we selected essential QA items and each tolerance range for developing proper QA protocol, and we made anatomical phantom for execution of selected QA items and evaluation of overall state of QA, and then, we use this measured value as a reference. Quality Assurance items are consisted of Mechanical accuracy QA part and Radiation delivery QA part. Mechanical accuracy QA part is comprised of radiation generation machine part, assistive devices part and multi-leaf collimator part. Radiation delivery QA part is divided into radiation isocenter accuracy and dosimetric evaluation. After that, developed novalis QA tables are made by using these QA items. These novalis QA tables would be used to good standard in order to maintain apt accuracy for radiosurgery in daily, weekly, monthly and annually periods.

키워드

참고문헌

  1. 치료방사선량 평가 및 성능검증기술 개발: KRISS/IR-2007-048, 과학기술부 (2007)
  2. 원격치료용 방사선조사장치의 안전관리 기준 개발: KIRAMS/RR-002/2002, 식품의약품안정청 (2002)
  3. Leavitt DD: Beam shaping for SRT/SRS. Med Dosim 23:229-236 (1998) https://doi.org/10.1016/S0958-3947(98)00018-1
  4. Vivian P. Cosgrove, Ulrich Jahn, Mathias Pfaender, et al: Commissioning of micro multi-leaf collimator and planning system for stereotactic radiosurgery. Radiother Oncol 50:325-336 (1999) https://doi.org/10.1016/S0167-8140(99)00020-1
  5. AAPM TG NO. 40 Report: Comprehensive QA for radiation oncology. America Association of Physicist in Medicine (1994)
  6. AAPM TG NO. 142 Report: Quality assurance of medical accelerators (2009)
  7. David Thwaites, Pierre Scalliet, Jan Willem Leer, Jens Overgaard: Quality assurance in radiotherapy. Radiotherapy and Oncology 35:61-73 (1995) https://doi.org/10.1016/0167-8140(95)01549-V
  8. IAEA TECDOC-1040: Design and implementation of a radiotherapy programme (1998)
  9. Solberg TD, Fogg R, Selch MT, De Salles AAF: Conformal radiosurgery using a dedicated linac and micro multileaf collimator. Radiosurgery Basel Karger 3:53-63 (2000)
  10. Yin FF, Ryu S, Ajlouni M, et al: A technique of intensitymodulated radiosurgery (IMRS) for spinal tumors. Med Phys 29:2815-2822 (2002) https://doi.org/10.1118/1.1521722
  11. Rock J, Kole M, Yin FF, et al: Radiosurgical treatment for Ewing's sarcoma of the lumbar spine. Spine 27:E471-E475 (2002) https://doi.org/10.1097/00007632-200211010-00021
  12. Christian PK, Oliver J, Jurgen D, Sabin K, Gunther HH: Three-dimensional accuracy and interfractional reproducibility of patient fixation and positioning using a stereotactic head and neck mask system. Int J Radiat Oncol Biol Phys 49:1493-1504 (2001) https://doi.org/10.1016/S0360-3016(00)01562-5
  13. Hamilton AJ, Lulu BA, Fosmire H, et al: Preliminary clinical experience with linear accelerator-based spinal stereotactic radiosurgery technique and application. Neurosurgery 36:311-319 (1995) https://doi.org/10.1227/00006123-199502000-00010
  14. Ryu SI, Chang SD, Kim DH, et al: Image-guided Hypofractionated stereotactic radiosurgery to spinal lesions. Neurosurgery 49:838-846 (2001)
  15. Adler JR Jr, Murphy MJ, Chang SD, Hancock SL: Imageguided robotic radiosurgery. Neurosurgery 44:1299-1307 (1999)
  16. Hamilton AJ, Lulu BA, Fosmire H, Gossett L: Linacbased spinal stereotactic radiosurgery. Stereotactic Funct Neurosurg 66:1-9 (1996)
  17. Solberg TD, Boedeker KL, Fogg R, et al: Dynamic arc radiosurgery field shaping:Comparison with static field conformal and noncoplanar circular arcs. Int J Radiat Oncol Biol Phys 49:1481-1491 (2001) https://doi.org/10.1016/S0360-3016(00)01537-6
  18. Bourland JD, McCollogh KP: Static field conformal stereotactic radiosurgery: Physical techniques. Int J Radiat Oncol Phys 28:471-479 (1994) https://doi.org/10.1016/0360-3016(94)90074-4
  19. Shiu AS, Kooy HM, Ewton JR, et al: Comparison of miniature multileaf collimation (MMLC) with circular collimation for stereotactic treatment. Int J Radiat Oncol Biol Phys 37:679-688 (1997) https://doi.org/10.1016/S0360-3016(96)00507-X
  20. Winston KR, Lutz W: Linear accelerator as a neurosurgical tool. for stereotactic radiosurgery. Neurosurgery 22:454-464 (1988) https://doi.org/10.1227/00006123-198803000-00002
  21. Lutz W, Winston KR, Maleki N: A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 14:373-381 (1988) https://doi.org/10.1016/0360-3016(88)90446-4
  22. Podgorsak EB, Olivier A, Pla M, Lefebvre P, Hazel J: Dynamic stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 14:115-125 (1988) https://doi.org/10.1016/0360-3016(88)90059-4
  23. Kooy HM, Nedzi LA, Loeffler JS, et al: Treatment planning for stereotactic radiosurgery of intra-cranial lesions. Int J Radiat Oncol Biol Phys 21:683-693 (1991) https://doi.org/10.1016/0360-3016(91)90687-Y
  24. Hacker FL, Kooy HM, Bellerive MR, et al: Beam shaping for conformal fractionated stereotactic radiotherapy: a modeling study. Int J radiat Oncol Biol Phys 38:1113-1121 (1997) https://doi.org/10.1016/S0360-3016(97)00151-X
  25. Nedzi LA, Kooy HM, Alexander E III, Svensson GK, Loeffler JS: Dynamic field shaping for stereotactic radiosurgery: a model-ing study. Int J Radiat Oncol Biol Phys 25: 859-869 (1993) https://doi.org/10.1016/0360-3016(93)90316-N
  26. Verhey LJ, Smith V, Serago CF: Comparison of radiosurgery treatment modalities based on physical dose distributions. Int J Radiat Oncol Biol Phys 40:497-505 (1998) https://doi.org/10.1016/S0360-3016(97)00720-7
  27. VARIAN Medical System: Novalis Customer Acceptance Procedure, CAP
  28. AAPM TG NO. 54 Report: stereotactic radiosurgery (1995)
  29. 이동준, 손문준, 이기택 등: 정위마스크 시스템을 사용한 방사선수술시 회전중심점의 재현성. 의학물리 13:135-138 (2002)
  30. 이동준, 손문준, 이기택 등: 노발리스 ExacTrac을 이용한 척추 정위 방사선수술 방법 평가. 의학물리 13:218-223 (2002)
  31. Lee DJ, Sohn MJ, Lee CH: Application of polymer gel dosimetry for the 3d dose verification of an IMRS treatment. AOCMP, 2009, Thailand, pp. 156