Very Small Putative Stem Cells Detected in Human Endometrium

인간 자궁내막에서 발견되는 극소형 추정줄기세포

  • Choi, Jong-Ryeol (Department of Obstetrics and Gynecology, Pusan National University School of Medicine) ;
  • Joo, Jong-Kil (Department of Obstetrics and Gynecology, Pusan National University School of Medicine) ;
  • Jun, Eun-Sook (Medical Research Institute, Pusan National University Hospital) ;
  • Ko, Kyoung-Rae (Infertility Clinic, Pusan National University Hospital) ;
  • Lee, Hong-Gu (Department of Animal Science & PNU-Special Animal Techology Center, Pusan National University) ;
  • Lee, Kyu-Sup (Department of Obstetrics and Gynecology, Pusan National University School of Medicine) ;
  • Kim, Won-Gyu (Department of Obstetrics and Gynecology, Kosin University College of Medicine)
  • 최종렬 (부산대학교 의학전문대학원 산부인과학교실) ;
  • 주종길 (부산대학교 의학전문대학원 산부인과학교실) ;
  • 전은숙 (부산대학교병원 의학연구소) ;
  • 고경래 (부산대학교병원 불임클리닉) ;
  • 이홍구 (부산대학교 생명자원과학대학 동물생명자원과) ;
  • 이규섭 (부산대학교 의학전문대학원 산부인과학교실) ;
  • 김원규 (고신대학교 의과대학 산부인과학교실)
  • Received : 2010.02.13
  • Accepted : 2010.06.03
  • Published : 2010.06.30

Abstract

Objective: It has been recently reported that very small stem cells with pluripotency are detected in murine and human. The purposes of this study are to confirm whether very small putative stem cells (VSPSCs), which have the proper characteristics of stem cells as well as the expression of stem cell markers, are detected in human endometrium. Methods: The endometrial cells of 5 women, which were obtained by endometrial biopsy, were cultured for 2 weeks and were confirmed for the expressions of alkaline phosphatase, OCT-4 and CXCR4 by immunochemistry. Subsequently VSPSCs were separated by percoll density gradient method and were cultured. Also VSPSCs and their derived cells were confirmed for the expressions of OCT-4 and CXCR4. Results: The colonies, which is composed with VSPSCs less than 3 ${\mu}m$ and the 5~15 ${\mu}m$ sized hyperchromatic round cells, were detected in the endometrium of all of women and showed the strong expressions of alkaline phosphatase, OCT-4 and CXCR4. In culture after the separation of VSPSCs by percoll, these cells showed the morphological and functional characteristics of stem cells; self-renewal, colony formation, embryoid body-like formation and differential plasticity. VSPSCs formed gradually the 5~15 ${\mu}m$ sized hyperchromatic round cells and the 10~20 ${\mu}m$ sized sphere-shaped cells by cell-to-cell aggregation or cell fusion. Then these cells differentiated the various cells including fibroblast-like cells, nerve-like cells and endothelium-like cells. VSPSCs and their derived cells often showed the strong expressions of OCT-4 and CXCR4. Conclusion: VSPSCs less than 3 ${\mu}m$ and their derived cells are detected in human endometrium and these cells have the proper characteristics of stem cells and the expressions of stem cell markers as alkaline phosphatase, OCT-4 and CXCR4.

목 적: 최근 다능성을 가진 극소형 줄기세포가 생쥐와 인간에서 발견된다고 보고되었다. 이 연구의 목적은 극소형 추정줄기세포들이 인간 자궁내막에 존재하는지, 그리고 이 세포들이 줄기세포의 고유 특성들과 줄기세포 표지자들을 발현시키는지 확인하기 위함이다. 연구방법: 자궁내막조직검사로부터 채취한 여성 5명의 자궁내막세포를 2주 동안 배양하였으며, alkaline phosphatase, OCT-4, CXCR4 면역화학염색을 통해 줄기세포 표지자 발현 여부를 확인하였다. 이후 percoll density gradient method 방법으로 극소형 추정줄기세포들을 분리하여 배양하였으며, 또한 극소형 추정줄기세포들과 그 유래의 세포들이 OCT-4와 CXCR4를 발현시키는지 확인하였다. 결 과: $3{\mu}m$ 미만의 극소형 추정줄기세포들과 5~15 ${\mu}m$의 과다염색질 원형세포들로 구성된 군집들이 모든 여성의 자궁내막세포에서 발견되었으며, alkaline phosphatase, OCT-4 및 CXCR4를 강하게 발현시켰다. Percoll을 이용하여 극소형 추정줄기세포들을 분리 배양한 결과, 극소형 추정줄기세포들은 자가재생, 배아체양 형성, 군집 형성, 분화 가소성과 같은 줄기세포의 형태학적 및 기능적인 특성들을 나타내었다. 극소형 추정줄기세포들은 세포간 응집 혹은 세포융합을 통하여 약 5~15 ${\mu}m$ 과다염색질 원형세포들과 약 10~20 ${\mu}m$ 구형세포들을 점진적으로 형성시켰다. 이후이 세포들은 섬유아세포 유사세포, 신경유사세포, 혈관내피유사세포를 포함하는 다양한 세포로 분화하였다. 또한 극소형 추정줄기세포들과 극소형 추정줄기세포에서 유래한 세포들은 흔히 OCT-4와 CXCR4를 강하게 발현시켰다. 결 론: 3 ${\mu}m$ 미만의 극소형 추정줄기세포들과 극소형 추정줄기세포에서 유래한 세포들이 인간 자궁내막에서 발견되며, 이 세포들은 줄기세포의 고유 특성들과 줄기세포 표지자인 alkaline phosphatase, OCT-4, CXCR4를 발현시킨다.

Keywords

References

  1. Gargett CE. Uterine stem cells: what is the evidence? Hum Reprod Update 2007; 13: 87-101. https://doi.org/10.1093/humupd/dml045
  2. Meng X, Ichim TE, Zhong J, Rogers A, Yin Z, Jackson J, et al. Endometrial regenerative cells: a novel stem cell population. J Transl Med 2007; 5: 57. https://doi.org/10.1186/1479-5876-5-57
  3. Gargett CE. Stem cells in gynaecology. Aust N Z J Obstet Gynaecol 2004; 44: 380-6. https://doi.org/10.1111/j.1479-828X.2004.00290.x
  4. Chan RW, Schwab KE, Gargett CE. Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod 2004; 70: 1738-50. https://doi.org/10.1095/biolreprod.103.024109
  5. Bongso A, Richards M. History and perspective of stem cell research. Best Pract Res Clin Obstet Gynaecol 2004; 18: 827 -42. https://doi.org/10.1016/j.bpobgyn.2004.09.002
  6. Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 1990; 110: 1001-20.
  7. Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell 1997; 88: 287-98. https://doi.org/10.1016/S0092-8674(00)81867-X
  8. Gage FH. Mammalian neural stem cells. Science 2000; 287: 1433-8. https://doi.org/10.1126/science.287.5457.1433
  9. Ratajczak MZ, Zuba-Surma E, Kucia M, Reca R, Wojakowski W, Ratajczak J. The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 2006; 20: 1915-24. https://doi.org/10.1038/sj.leu.2404357
  10. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J, et al. A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 2006; 20: 857-69. https://doi.org/10.1038/sj.leu.2404171
  11. Ratajczak MZ, Zuba-Surma EK, Wysoczynski M, Ratajczak J, Kucia M. Very small embryonic-like stem cells: characterization, developmental origin, and biological significance. Exp Hematol 2008; 36: 742-51. https://doi.org/10.1016/j.exphem.2008.03.010
  12. Zuba-Surma EK, Wu W, Ratajczak J, Kucia M, Ratajczak MZ. Very small embryonic-like stem cells in adult tissues-potential implications for aging. Mech Ageing Dev 2009; 130: 58-66. https://doi.org/10.1016/j.mad.2008.02.003
  13. Hung SC, Chen NJ, Hsieh SL, Li H, Ma HL, Lo WH. Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells 2002; 20: 249-58. https://doi.org/10.1634/stemcells.20-3-249
  14. McGuckin C, Jurga M, Ali H, Strbad M, Forraz N. Culture of embryonic-like stem cells from human umbilical cord blood andonward differentiation to neural cells in vitro. Nat Protoc 2008; 3: 1046-55. https://doi.org/10.1038/nprot.2008.69
  15. Virant-Klun I, Rozman P, Cvjeticanin B, Vrtacnik-Bokal E, Novakovic S, Rulicke T, et al. Parthenogenetic embryo-like structures in the human ovarian surface epithelium cell culture in postmenopausal women with no naturally present follicles and oocytes. Stem Cells Dev 2009; 18: 137-49. https://doi.org/10.1089/scd.2007.0238
  16. Choi JR, Joo JK, Na YJ, Ko KR, Lee HG, Lee KS, et al. The hyperexpressions of putative stem cells in the eutopic endometrium of patients with advanced endometriosis. Korean J Obstet Gynecol 2010; 53: 264-73. https://doi.org/10.5468/kjog.2010.53.3.264
  17. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 2000; 97: 14720-5. https://doi.org/10.1073/pnas.97.26.14720
  18. Pellegrini G, Golisano O, Paterna P, Lambiase A, Bonini S, Rama P, et al. Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J Cell Biol 1999; 145: 769-82. https://doi.org/10.1083/jcb.145.4.769
  19. Stingl J, Eaves CJ, Zandieh I, Emerman JT. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat 2001; 67: 93-109. https://doi.org/10.1023/A:1010615124301
  20. van Os R, Kamminga LM, de Haan G. Stem cell assays: something old, something new, something borrowed. Stem Cells 2004; 22: 1181-90. https://doi.org/10.1634/stemcells.2004-0095
  21. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-7. https://doi.org/10.1126/science.284.5411.143
  22. Morris RJ, Potten CS. Slowly cycling (label-retaining) epidermal cells behave like clonogenic stem cells in vitro. Cell Prolif 1994; 27: 279-89. https://doi.org/10.1111/j.1365-2184.1994.tb01425.x
  23. Kim EE, Wyckoff HW. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. J Mol Biol 1991; 218: 449-64. https://doi.org/10.1016/0022-2836(91)90724-K
  24. Zaehres H, Lensch MW, Daheron L, Stewart SA, Itskovitz- Eldor J, Daley GQ. High-efficiency RNA interference in human embryonic stem cells. Stem Cells 2005; 23: 299-305. https://doi.org/10.1634/stemcells.2004-0252
  25. Neumuller RA, Knoblich JA. Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev 2009; 23: 2675-99. https://doi.org/10.1101/gad.1850809
  26. Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell 2004; 116: 639-48. https://doi.org/10.1016/S0092-8674(04)00208-9
  27. Tosh D, Slack JM. How cells change their phenotype. Nat Rev Mol Cell Biol 2002; 3: 187-94. https://doi.org/10.1038/nrm761
  28. Pomerantz J, Blau HM. Nuclear reprogramming: a key to stem cell function in regenerative medicine. Nat Cell Biol 2004; 6: 810-6. https://doi.org/10.1038/ncb0904-810
  29. Nilsson SK, Simmons PJ. Transplantable stem cells: home to specific niches. Curr Opin Hematol 2004; 11: 102-6. https://doi.org/10.1097/01.moh.0000133651.06863.9c
  30. Suh H, Consiglio A, Ray J, Sawai T, D'Amour KA, Gage FH. In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 2007; 1: 515-28. https://doi.org/10.1016/j.stem.2007.09.002
  31. Streckfuss-Bomeke K, Vlasov A, Hulsmann S, Yin D, Nayernia K, Engel W, et al. Generation of functional neurons and glia from multipotent adult mouse germ-line stem cells. Stem Cell Res 2009; 2: 139-54. https://doi.org/10.1016/j.scr.2008.09.001
  32. Mukai N, Akahori T, Komaki M, Li Q, Kanayasu-Toyoda T, Ishii-Watabe A, et al. A comparisonof the tube forming potentials of early and late endothelial progenitor cells. Exp Cell Res 2008; 314: 430-40. https://doi.org/10.1016/j.yexcr.2007.11.016
  33. Bellik L, Ledda F, Parenti A. Morphological and phenotypical characterization of human endothelial progenitor cells in an early stage of differentiation. FEBS Lett 2005; 579: 2731-6. https://doi.org/10.1016/j.febslet.2005.04.003