Effects of Chitosan on the Differentiation of MDPC-23 Cells

  • Park, Ju-Hyun (Oral Biology Research Institute, Chosun University School of Dentistry) ;
  • Kim, Do-Kyung (Oral Biology Research Institute, Chosun University School of Dentistry) ;
  • Park, Jong-Tae (Division in Anatomy and Developmental Biology, Department of Oral Biology, Brain Korea 21 Project, Yonsei University College of Dentistry) ;
  • Kim, Su-Young (Oral Biology Research Institute, Chosun University School of Dentistry) ;
  • Yu, Sun-Kyoung (Oral Biology Research Institute, Chosun University School of Dentistry) ;
  • Cho, Kwang-Hee (Oral Biology Research Institute, Chosun University School of Dentistry) ;
  • Kim, Heung-Joong (Oral Biology Research Institute, Chosun University School of Dentistry)
  • Received : 2010.08.25
  • Accepted : 2010.09.03
  • Published : 2010.09.30

Abstract

The effects of chitosan upon the experimentally induced differentiation of MDPC-23 cells, derived from mouse dental papilla cells, were investigated by RT-PCR, observations of cell morphology and Alizaline red-S staining. Chitosan was found to significantly increase and accelerate the expression of ALP mRNA but decrease the ColI transcript levels, as compared with the control, in a time-dependent manner during the differentiation of MDPC-23 cells. Chitosan also significantly downregulated ON mRNA expression and accelerated mineralization in differentiating MDPC-23 cells. These results suggest that chitosan facilitates odontoblast differentiation and mineralization and may have potential clinical applications as a dentin regeneration material.

Keywords

References

  1. About I, Bottero MJ, de Denato P, Camps J, Franquin JC, Mitsiadis TA. Human dentin production in vitro. Exp Cell Res. 2000;258:33-41. https://doi.org/10.1006/excr.2000.4909
  2. Begue-Kirn C, Smith AJ, Loriot M, Kupferle C, Ruch JV, Lesot H. Comparative analysis of TGF beta s, BMPs, IGF1, msxs, fibronectin, osteonectin and bone sialoprotein gene expression during normal and in vitro-induced odontoblast differentiation. Int J Dev Biol. 1994;38:405-20.
  3. Bosshardt DD, Nanci A. Hertwig's epithelial root sheath, enamel matrix proteins, and initiation of cementogenesis in porcine teeth. J Clin Periodontol. 2004;31:184-92. https://doi.org/10.1111/j.0303-6979.2004.00473.x
  4. Chien HH, Lin WL, Cho MI. Expression of TGF-beta isoforms and their receptors during mineralized nodule formation by rat periodontal ligament cells in vitro. J Periodontal Res. 1999;34:301-9. https://doi.org/10.1111/j.1600-0765.1999.tb02258.x
  5. Dodane V, Amin Khan M, Merwin JR. Effect of chitosan on epithelial permeability and structure. Int J Pharm. 1999;182:21-32. https://doi.org/10.1016/S0378-5173(99)00030-7
  6. D'Souza RN, Cavender A, Sunavala G, Alvarez J, Ohshima T, Kulkarni AB, MacDougall M. Gene expression patterns of murine dentin matrix protein 1 (Dmp1) and dentin sialophosphoprotein (DSPP) suggest distinct developmental functions in vivo. J Bone Miner Res. 1997;12:2040-9. https://doi.org/10.1359/jbmr.1997.12.12.2040
  7. Finisie MR, Josue A, Favere VT, Laranjeira MC. Synthesis of calcium-phosphate and chitosan bioceramics for bone regeneration. An Acad Brad Cienc. 2001;73:525-32. https://doi.org/10.1590/S0001-37652001000400006
  8. Foster BL, Nociti FH Jr, Swanson EC, Matsa-Dunn D, Berry JE, Cupp CJ, Zhang P, Somerman MJ. Regulation of cementoblast gene expression by inorganic phosphate in vitro. Calcif Tissue Int. 2006;78:103-12. https://doi.org/10.1007/s00223-005-0184-7
  9. Gallaher CM, Munion J, Hesslink Jr R, Wise J, Gallaher DD. Cholesterol reduction by glucomannan and chitosan is mediated by changes in cholesterol absorption and bile acid and fat excretion in rats. J Nutr. 2000;130:2753-9. https://doi.org/10.1093/jn/130.11.2753
  10. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA. 2000;97:13625-30. https://doi.org/10.1073/pnas.240309797
  11. Hanks CT, Fang D, Sun Z, Edwards CA, Butler WT.(a) Dentin-specific proteins in MDPC-23 cell line. Eur J Oral Sci. 1998;106(Suppl 1):260-6. https://doi.org/10.1111/j.1600-0722.1998.tb02185.x
  12. Hanks CT, Sun ZL, Fang DN, Edwards CA, Wataha JC, Ritchie HH, Butler WT.(b) Cloned 3T6 cell line from CD-1 mouse fetal molar dental papillae. Connect Tissue Res. 1998;37:233-49. https://doi.org/10.3109/03008209809002442
  13. Hirano S. Chitin biotechnology applications. Biotechnol Annu Rev. 1996;2:237-258. https://doi.org/10.1016/S1387-2656(08)70012-7
  14. Hwang IN, Jeong YJ, Jung JY, Lee JH, Kim KM, Kim WJ. Mechanism underlying NO-induced apoptosis in human gingival fibroblasts. Int J Oral Biol. 2009;34:7-14.
  15. Illum L. Chitosan and its use as a pharmaceutical excipient. Pharm Res. 1998;15:1326-31. https://doi.org/10.1023/A:1011929016601
  16. Jang MJ, Seo DH, Jang HS, Park JK, Kim DG, Choi C. Characterization of chitosan-DNA complex for application as a gene carrier. J Chitin Chitosan. 2006;11:175-9.
  17. Jun JH, Ryoo HM, Woo KM, Kim GS, Baek JH. Bone morphogenetic protein 2-induced MAPKs activation is independent of the Smad1/5 activation. Int J Oral Biol. 2009;34:115-21.
  18. Lee YM, Park YJ, Lee SJ, Ku Y, Han SB, Choi SM, Klokkevold PR, Chung CP. Tissue engineered bone formation using chitosan/tricalcium phosphate sponges. J Periodontol. 2000;71:410-7. https://doi.org/10.1902/jop.2000.71.3.410
  19. Mina M, Kollar EJ. The induction of odontogenesis in nondental mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol. 1987;32: 123-7. https://doi.org/10.1016/0003-9969(87)90055-0
  20. Nam JP, Kim DG, Jeong YI, Jang MK, Nah JW. Preparation and NMR spectroscopic characterization of low molecular water soluble N,O-carboxymethyl chitosan. J Chitin Chitosan. 2007;12:151-5.
  21. Nanci A. Ten Cate's oral histology: development, structure and function. 6th ed., pp 78-103, Mosby, St. Louis, 2003.
  22. Narayanan K, Srinivas R, Ramachandran A, Hao J, Quinn B, George A. Differentiation of embryonic mesenchymal cells to odontoblast-like cells by overexpression of dentin matrix protein 1. Proc Natl Acad Sci USA. 2001;98: 4516-21. https://doi.org/10.1073/pnas.081075198
  23. Ormrod DJ, Holmes CC, Miller TE. Dietary chitosan inhibits hypercholesterolaemia and atherogenesis in the apolipoprotein E-deficient mouse model of atherosclerosis. Atherosclerosis. 1998;138:329-34. https://doi.org/10.1016/S0021-9150(98)00045-8
  24. Pae HO, Seo WG, Kim NY, Oh GS, Kim GE, Kim YH, Kwak HJ, Yun YG, Jun CD, Chung HT. Induction of granulocytic differentiation in acute promyeloocytic leukemia cells (HL-60) by water-soluble chitosan oligomer. Leuk Res. 2001;25:339-46. https://doi.org/10.1016/S0145-2126(00)00138-7
  25. Papagerakis P, Berdal A, Mesbah M, Peuchmaur M, Malaval L, Nydegger J. Investigation of osteocalcin, osteonectin, and dentin sialophosphoprotein in developing human teeth. Bone. 2002;30:377-85. https://doi.org/10.1016/S8756-3282(01)00683-4
  26. Peluso G, Petillo O, Tanieri M, Santin M, Ambrosic L, Calabro D, Avallone B, Balsamo G. Chitosan-mediated stimulation of macrophage function. Biomaterials. 1994; 15:1215-20. https://doi.org/10.1016/0142-9612(94)90272-0
  27. Porporatto C, Bianco ID, Riera CM, Correa SG. Chitosan induces different L-arginine metabolic pathways in resting and inflammatory macrophages. Biochem Biophys Res Commun. 2003;304:266-72. https://doi.org/10.1016/S0006-291X(03)00579-5
  28. Ranaldi G, Marigliano I, Vespignani I, Perozzi G, Sambuy Y. The effect of chitosan and other polycations on tight junction permeability in the human intestinal Caco-2 cell line. J Nutr Biochem. 2002;13:157-67. https://doi.org/10.1016/S0955-2863(01)00208-X
  29. Ritchie HH, Ritchie DG, Wang LH. Six decades of dentinogenesis research. Historical and prospective views on phosphophoryn and dentin sialoprotein. Eur J Oral Sci. 1998;106(Suppl 1):211-20. https://doi.org/10.1111/j.1600-0722.1998.tb02178.x
  30. Schipper NGM, Olsson S, Hoogstraate JA, deBoer AG, Varum KM, Artursson P. Chitosans as absorption enhancers for poorly absorbable drugs : Mechanism of absorption enhancement. Pharm Res. 1997;14:923-9. https://doi.org/10.1023/A:1012160102740
  31. Schipper NGM, Varum KM, Artursson P. Chitosans as absorption enhancers for poorly absorbable drugs : Influence of molecular weight and degree of acetylation on drug transport across human intestinal epithelial (Caco-2) cells. Pharm Res. 1996;13:1686-92. https://doi.org/10.1023/A:1016444808000
  32. Schipper NGM, Varum KM, Stenberg P, Ocklind G, Lennernas H, Artursson P. Chitosans as absorption enhancers of poorly absorbable drugs: Influence of mucus on absorption enhancement. Eur J Pharm Sci. 1999;8:335-43. https://doi.org/10.1016/S0928-0987(99)00032-9
  33. Shibuya N, Nemoto E, Kanaya S, Kunii R, Shimauchi H. Retinoic acid is a potential negative regulator for differentiation of human periodontal ligament cells. J Periodontal Res. 2005;40:432-40. https://doi.org/10.1111/j.1600-0765.2005.00811.x
  34. Sreenath T, Thyagarajan T, Hall B, Longenecker G, D'Souza R, Hong S, Wright JT, MacDougall M, Sauk J, Kulkarni AB. Dentin sialophosphoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dentinogenesis imperfecta type III. J Biol Chem. 2003;278:24874-80. https://doi.org/10.1074/jbc.M303908200
  35. Sun ZL, Fang DN, Wu XY, Ritchie HH, Begue-Kirn C, Wataha JC, Hanks CT, Butler WT. Expression of dentin sialoprotein (DSP) and other molecular determinants by a new cell line from dental papillae, MDPC-23. Connect Tissue Res. 1998;37:251-61. https://doi.org/10.3109/03008209809002443
  36. Telles PD, Hanks CT, Machado MA, Nor JE. Lipoteichoic acid up-regulates VEGF expression in macrophages and pulp cells. J Dent Res. 2003;82:466-70. https://doi.org/10.1177/154405910308200612
  37. Tokoro A, Tatewaki N, Suzuki K, Mikami T, SuzukiS, Suzuki M. Growth-inhibitory effect of hexa-N-acetylchitohexanose and chitohexanose against Meth-A solid tumor. Chem Pharm Bull. 1988;86:784-90.
  38. Tziafas D, Kolokuris I. Inductive influences of demineralized dentin and bone matrix on pulp cells: an approach of secondary dentinogenesis. J Dent Res. 1990;69:75-81. https://doi.org/10.1177/00220345900690011301
  39. Tziafas D, Papadimitriou S. Role of exogenous TGF-beta in induction of reparative dentinogenesis in vivo. Eur J Oral Sci. 1998;106(Suppl 1):192-6. https://doi.org/10.1111/j.1600-0722.1998.tb02175.x