Recovery of Tungsten from WC-Co Hardmetal Sludge by Aqua regia Treatment

WC-Co 초경합금(超硬合金) 슬러지로부터 왕수처리(王水處理)를 이용한 텅스텐의 회수(回收)

  • Kim, Ji-Hye (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources (KIGAM)) ;
  • Kim, Eun-Young (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources (KIGAM)) ;
  • Kim, Won-Back (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources (KIGAM)) ;
  • Kim, Byung-Su (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources (KIGAM)) ;
  • Lee, Jae-Chun (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources (KIGAM)) ;
  • Shin, Jae-Soo (Department of Materials Science and Engineering, Daejeon University)
  • 김지혜 (한국지질자원연구원 광물자원연구본부) ;
  • 김은영 (한국지질자원연구원 광물자원연구본부) ;
  • 김원백 (한국지질자원연구원 광물자원연구본부) ;
  • 김병수 (한국지질자원연구원 광물자원연구본부) ;
  • 이재천 (한국지질자원연구원 광물자원연구본부) ;
  • 신재수 (대전대학교 신소재공학과)
  • Received : 2010.06.22
  • Accepted : 2010.08.06
  • Published : 2010.08.30

Abstract

A fundamental study was carried out to develop a process for recycling tungsten and cobalt from WC-Co hardmetal sludge generated in the manufacturing process of hardmetal tools. The complete extraction of cobalt and simultaneous formation of tungstic was achieved by treating the sludge using aqua regia. The effect of aqua regia concentration, reaction temperature and time, pulp density on cobalt leaching and tungstic acid formation was investigated. The complete leaching of cobalt was attained at the optimum conditions: 100 vol.% aqua regia concentration, $100^{\circ}C$ temperature, 60 min. reaction time and 400 g/L pulp density. A complete conversion of tungsten carbide of the sludge to tungstic acid was however, obtained at the pulp densities lower than 150 g/L under the above condition. The progress of reaction during the aqua regia treatment of the sludge was monitored through the XRD phase identification of the residue. The metallic impurities in the tungstic acid so produced could be further removed as insoluble residues by dissolving the tungsten values in ammonia solution. The ammonium paratungstate($(NH_4)_{10}{\cdot}H_2W_{12}O_{42}{\cdot}4H_2O$) of 99.85% purity was prepared from the ammonium polytungstate solution by the evaporation crystallization method.

초경공구의 제조공정에서 발생하는 WC-Co 초경합금 슬러지로부터 텅스텐의 순환활용을 위한 기초연구가 수행되었다. 왕수를 사용하여 슬러지로부터 코발트를 침출함과 동시에 탄화텅스텐을 텅스텐산으로 변환시켜 회수하였다. 왕수농도, 반응온도와 시간, 광액농도 등이 코발트의 침출과 텅스텐산의 생성에 미치는 영향을 조사하였으며 최적조건을 도출하였다. 왕수농도 100 vol.%, 반응온도 $100^{\circ}C$, 반응시간 60분에서슬러지의 광액농도가 400 g/L에 도달할 때 까지 슬러지로부터 코발트의 완전한 추출이 이루어졌으나, 슬러지에 존재하는 모든 탄화텅스텐이 텅스텐산으로 완전히 전환되는 것은 광액농도가 150 g/L 이하일 때 이었다. 생성된 텅스텐산을 암모니아 용액에 용해함으로서 금속 불순물들을 불용성 잔사로 제거하는 것이 가능하였다. 증발결정 공정을 통하여 정제된 암모늄 텅스테이트 용액으로부터 99.85%의 순도를 가지는 암모늄 파라텅스테이트($(NH_4)_{10}{\cdot}H_2W_{12}O_{42}{\cdot}4H_2O$)를 얻을 수 있었다.

Keywords

References

  1. Lassner, E. and Schubert, W.-D., 1999: " Tungsten: Properties, Chemistrγ, Technology of the Element, Alloys and Chemical Compounds", First ed., pp. 321-363, Kluwer academic/Plenum Publishers, New York.
  2. 안동길, 2008: 텅스텐의 동향 및 초경합금 연구개발, 재료마당, 21(4), pp. 28-33.
  3. Shedd, K. B., 2005: " Tungsten recycling in the United States in 2000", Open-File Report 2005-1028, U.S. Geological Survey, Reston, Virginia.
  4. Lassner, E., 1995: From tungsten concentrates and scrap to highly pure ammonium paratungstate (APT), Int. J. Refract. Met. Hard Mater., 13, pp. 35-44. https://doi.org/10.1016/0263-4368(95)00002-X
  5. Vadasdi, K., 1995: Effiuent-free manufacture of ammonium paratungstate (APT) by recycling the byproducts, Int. J. Refract. Met. Hard Mater., 13, pp. 45-59. https://doi.org/10.1016/0263-4368(94)00032-8
  6. Singh Gaur, R. P., 2006: Modem hydrometallurgical production methods for tungstdn, JOM 58(9), pp. 45-49. https://doi.org/10.1007/s11837-006-0082-0
  7. 김지혜, 2010: "WC-Co系 超硬合金 加工슬러지로부터 코발트浸出 및 텅스텐 回收硏究 ", 석사학위논문, 대전대학교, 대전.
  8. Kim, E.-y. et al., 2010: A New Hydrometallurgical Route for the Recycling of WC-Co Hardmetal Sludge, submitted to Hydrometallurgy.
  9. Kolthoff, I. M. et al., 1969: "Quantitative chemical analysis", Fourth Ed, pp. 1137-1139, the Macmillan company, New York, USA.
  10. Sheng, P. P. and Etsell, T. H., 2007: Recovery of gold from computer circuit board scrap using aqua regia, Waste Manage. Res., 24(4), pp. 380-383.