HEV: A Review

하이브리드 전기 자동차(HEV) 기술동향

  • Nah, Do-Baek (KISTI(Korea Institute of Science and Technology Information)) ;
  • Shin, Hyo-Soon (KISTI(Korea Institute of Science and Technology Information))
  • Received : 2009.12.09
  • Accepted : 2010.03.29
  • Published : 2010.03.31

Abstract

Hybrid Electric Vehicle(HEV) and Plug-in Hybrid Electric Vehicle(PHEV) will replace Conventional Gasolene Engine Vehicle at a rapid rate to eliminate emission gases and improve fuel economy. This review describes Fuzzy Logic Control strategy and Optimization for Parallel Hybrid Electric Vehicle. Recent progress on Electric Motor and Li-ion Battery for HEV and PHEV are given. Analysis on competitiveness of Korean HEV and PHEV technology based on the number of papers published and patents registered are also performed.

하이브리드 전기자동차(HEV: Hybrid Electric Vehicle)와 플러그 인 하이브리드 전기자동차 (PHEV: Plug-in Hybrid Electric Vehicle)는 화석연료 배출가스를 제거하고 연료경제성을 개선하기 위하여 급속한 속도로 전통적 가솔린 엔진 자동차를 대체할 것이다. 이 리뷰는 병렬 하이브리드 전기자동차를 위한 퍼지로직 제어전략과 최적화를 설명하였다. HEV와 PHEV를 위한 전기모터와 리튬이온 배터리의 최근 발전을 기술하였으며 국제적 학술지에 출판된 논문수와 등록된 특허 수에 근거한 한국의 HEV와 PHEV 기술의 경쟁력 분석도 수행하였다.

Keywords

References

  1. Farzad Rajaei Salmasi et. al., "Control Strategies for Hybrid Electric Vehicles: Evolution, Classification, Comparison and Future Trends", IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 56, 5, pp. 2393-2404, 2007. https://doi.org/10.1109/TVT.2007.899933
  2. Niels J. Schouten et. al., "Fuzzy Logic Control for Parallel Hybrid Vehicles", IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 10, 3, pp. 460-468, 2002. https://doi.org/10.1109/87.998036
  3. Fazal U. Syed et. al., "Fuzzy Gain-Scheduling Proportional-Integral Control for Improving Engine Power and Speed Behavior in a Hybrid Electric Vehicle", IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 58, 1, pp. 69-84, 2009. https://doi.org/10.1109/TVT.2008.923690
  4. Srdjan M. Lukic et. al., "Effects of Drive train Hybridization on Fuel Economy and Dynamic Performance of Parallel Hybrid Electric Vehicles", IEEE TRANSACTIONS ON VEHICULAR TECHNOL OGY, 53, 2, pp. 385-389, 2004. https://doi.org/10.1109/TVT.2004.823525
  5. K. T. Chau et. al., "Overview of Permanent-Magnet Brushless Drives for Electric and Hybrid Electric Vehicles", IEEE TRANSACTIONS ON INDUSTRI AL ELECTRONICS, 55, 6,pp. 2246-2257, 2008.
  6. Mounir Zeraoulia, Mohamed EI Hachmi Benbouzid and Demba Diallo, "Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study", IEEE TRANSACTIONS ON VE HICULAR TECHNOLOGY, 55, 6, pp. 1756-1764, 2006. https://doi.org/10.1109/TVT.2006.878719
  7. Donghyun Kim et. al., "Vehicle Stability Enhancement of Four-Wheel-Drive Hybrid Electric Vehicle Using Rear Motor Control", IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 57, 2, pp. 727-735, 2008. https://doi.org/10.1109/TVT.2007.907016
  8. Thomas H. Bradley, Andrew A. Frank, "Design, demonstrations and sustainability impact assessments for plug-in hybrid electric vehicles", Renewable and sustainable Energy Reviews, 13, pp. 115-128, 2009. https://doi.org/10.1016/j.rser.2007.05.003
  9. Ali Emadi et. al., "Power Electronics and Motor Drives in Electric, Hybrid Electric, and plug-In Hybrid Electric Vehicles", IEEE TRANSACTIONS ON INDUST RIAL ELECTRONICS, 55(6), pp. 2237-2245, 2008.
  10. Ching-Shin Norman Shiau et, al., "Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles", Energy Policy, 37, pp. 2653–2663, 2009. https://doi.org/10.1016/j.enpol.2009.02.040
  11. Byoungwoo Kang et. al., "Battery materials for ultrafast charging and discharging", Nature, 458, pp. 190-193, 2009. https://doi.org/10.1038/nature07853
  12. A. Abouimrane et. al., "Sulfone-based electrolytes for high-voltage Li-ion batteries", Electrochemistry Communications, 11, pp. 1073-1076, 2009. https://doi.org/10.1016/j.elecom.2009.03.020
  13. A. Debart, A. J. Peterson, J. Bao, P.G. Bruce, Angw. Chem Int. Ed.., 47, 4521, 2001.
  14. http://www.patentmap.or.kr.
  15. SERI 경영 노트, "급부상하는 자동차용 2차 전지", 2009. 7. 23(제16호).