DOI QR코드

DOI QR Code

The Promotive Effects of Antioxidative Apigenin on the Bioavailability of Paclitaxel for Oral Delivery in Rats

  • Received : 2010.08.14
  • Accepted : 2010.10.12
  • Published : 2010.10.31

Abstract

This study was to investigate the effect of apigenin on the bioavailability of paclitaxel after oral and intravenous administration in rats. The effect of apigenin on P-glycoprotein (P-gp), cytochrome P450 (CYP)3A4 activity was evaluated. The pharmacokinetic parameters of paclitaxel were determined in rats after oral (40 mg/kg) or intravenous (5 mg/kg) administration of paclitaxel with apigenin (0.4, 2 and 8 mg/kg) to rats. Apigenin inhibited CYP3A4 activity with 50% inhibition concentration ($IC_{50}$) of 1.8 ${\mu}M$. In addition, apigenin significantly inhibited P-gp activity. Compared to the control group, apigenin significantly increased the area under the plasma concentration-time curve (AUC, p<0.05 by 2 mg/kg, 59.0% higher; p<0.01 by 8 mg/kg, 87% higher) of oral paclitaxel. Apigenin also significantly (p<0.05 by 2 mg/kg, 37.2% higher; p<0.01 by 8 mg/kg, 59.3% higher) increased the peak plasma concentration ($C_{max}$) of oral paclitaxel. Apigenin significantly increased the terminal half-life ($t_{1/2}$, p<0.05 by 8 mg/kg, 34.5%) of oral paclitaxel. Consequently, the absolute bioavailability (A.B.) of paclitaxel was significantly (p<0.05 by 2 mg/kg, p<0.01 by 8 mg/kg) increased by apigenin compared to that in the control group, and the relative bioavailability (R.B.) of oral paclitaxel was increased by 1.14- to 1.87-fold. The pharmacokinetics of intravenous paclitaxel were not affected by the concurrent use of apigenin in contrast to the oral administration of paclitaxel. Accordingly, the enhanced oral bioavailability by apigenin may be mainly due to increased intestinal absorption caused via P-gp inhibition by apigenin rather than to reduced renal and hepatic elimination of paclitaxel. The increase in the oral bioavailability might be mainly attributed to enhanced absorption in the gastrointestinal tract via the inhibition of P-gp and reduced first-pass metabolism of paclitaxel via the inhibition of the CYP3A subfamily in the small intestine and/or in the liver by apigenin. It appears that the development of oral paclitaxel preparations as a combination therapy is possible, which will be more convenient than the i.v. dosage form.

Keywords

References

  1. Andreeva, M., Niedmann, P. D., Binder, L., Armstrong, V. W.,Meden, H., Binder, M. and Oellerich, M. (1997). A simple andreliable reverse-phase high-performance liquid chromatographicprocedure for determination of paclitaxel (taxol) inhuman serum. Ther. Drug. Monit. 19, 327-332. https://doi.org/10.1097/00007691-199706000-00014
  2. Berg, S. L., Tolcher, A., O’Shaughnessy, J. A., Denicoff, A. M.,Noone, M., Ognibene, F. P., Cowan, K. H. and Balis, F. M.(1995). Effect of R-verapamil on the pharmacokinetics ofpaclitaxel in women with breast cancer. J. Clin. Oncol. 13,2039-2042. https://doi.org/10.1200/JCO.1995.13.8.2039
  3. Cao, X., Gibbs, S. T., Fang, L., Miller, H. A., Landowski, C. P.,Shin, H. C., Lennernas, H., Zhong, Y., Amidon, G. L., Yu, L.X. and Sun, D. (2006). Why is it challenging to predictintestinal drug absorption and oral bioavailability in humanusing rat model. Pharm. Res. 23, 1675-1686. https://doi.org/10.1007/s11095-006-9041-2
  4. Choi, B. C., Choi, J. S. and Han, H. K. (2006). Alteredpharmacokinetics of paclitaxel by the concomitant use ofmorin in rat. Int. J. Pharm. 323, 81-85. https://doi.org/10.1016/j.ijpharm.2006.05.046
  5. Choi, J. S., Kim, Y. C. and Jo, B. W. (2004). Enhanced paclitaxelbioavailability after oral administration of paclitaxel or prodrugto rats pretreated with quercetin. Eur. J. Pharm. Biopharm.57, 313-318. https://doi.org/10.1016/j.ejpb.2003.11.002
  6. Choi, J. S. and Li, X. (2005). The effect of verapamil on thepharmacokinetics of paclitaxel in rats. Eur. J. Pharm. Sci. 24,95-100. https://doi.org/10.1016/j.ejps.2004.10.002
  7. Choi, J. S. and Shin, S. C. (2005). Enhanced paclitaxel bioavailabilityafter oral coadministration of paclitaxel prodrug withnaringin to rat. Int. J. Pharm. 292, 149-156. https://doi.org/10.1016/j.ijpharm.2004.11.031
  8. Choi, S. U., Lee, B. H., Kim, K. H., Choi, E. J., Park, S. H., Shin,H. S., Yoo, S. E., Jung, N. P. and Lee, C. O. (1997). Novelmultidrug-resistance modulators, KR-30026 and KR-30031,in cancer cells. Anticancer. Res. 17, 4577-4582.
  9. Chuang, C. M., Monie, A., Wu, A. and Hung, C. F. (2009).Combination of apigenin treatment with therapeutic HPVDNA vaccination generates enhanced therapeutic antitumoreffects. J. Biomed. Sci. 27, 49-60.
  10. Crespi, C. L., Miller, V. P. and Penman, B. W. (1997). Microtiterplate assays for inhibition of human, drug-metabolizingcytochromes P450. Anal. Biochem. 248, 188-190. https://doi.org/10.1006/abio.1997.2145
  11. Critchfield, J. W., Welsh, C. J., Phang, J. M. and Yeh, G. C.(1994). Modulation of adriamycin accumulation and efflux byflavonoids in HCT-15 colon cells. Activation of P-glycoproteinas a putative mechanism. Biochem. Pharmacol. 48,1437-1445. https://doi.org/10.1016/0006-2952(94)90568-1
  12. Cummins, C. L., Jacobsen, W. and Benet, L. Z. (2002). Unmaskingthe dynamic interplay between intestinal P-glycoprotein andCYP3A4. J. Pharmacol. Exp. Ther. 300, 1036-1045. https://doi.org/10.1124/jpet.300.3.1036
  13. Dixon, R. A. and Steele, C. L. (1999). Flavonoids and isoflavonoids- a gold mine for metabolic engineering. Trends. PlantSci. 4, 394-400. https://doi.org/10.1016/S1360-1385(99)01471-5
  14. Fukuda, K., Ohta, T., Oshima, Y., Ohashi, N., Yoshikawa, M.and Yamazoe, Y. (1997). Specific CYP3A4 inhibitors ingrapefruit juice: furocoumarin dimers as components of druginteraction. Pharmacogenetics. 7, 391-396. https://doi.org/10.1097/00008571-199710000-00008
  15. Galati, G., Moridani, M. Y., Chan, T. S. and O’brien, P. J. (2001).Peroxidative metabolism of apigenin and naringenin versusluteolin and quercetin: glutathione oxidation and conjugation.Free. Radical. Biology & Medicine. 30, 370-382. https://doi.org/10.1016/S0891-5849(00)00481-0
  16. Gao, P., Rush, B. D., Pfund, W. P., Huang, T., Bauer, J. M.,Morozowich, W., Kuo, M. S. and Hageman, M. J. (2003).Development of a supersaturable SEDDS (S-SEDDS)formulation of paclitaxel with improved oral bioavailability. J.Pharm. Sci. 92, 2386-2398. https://doi.org/10.1002/jps.10511
  17. Gates, M. A., Vitonis, A. F., Tworoger, S. S., Rosner, B.,Titus-Ernstoff, L., Hankinson, S. E. and Cramer, D. W.(2009). Flavonoid intake and ovarian cancer risk in apopulation-based case-control study. Int. J. Cancer. 124,1918-1925. https://doi.org/10.1002/ijc.24151
  18. Harris, J. W., Rahman, A., Kim, B. R., Guengerich, F. P. andCollins, J. M. (1994). Metabolism of taxol by human hepaticmicrosomes and liver slices: participation of cytochrome P450 3A4 and an unknown P450 enzyme. Cancer Res. 54,4026-4035.
  19. Ho, P. C., Saville, D. J. and Wanwimolruk, S. (2001). Inhibitionof human CYP3A4 activity by grapefruit flavonoids, furanocoumarinsand related compounds. J. Pharm. Pharm. Sci. 4,217-227.
  20. Jeong, G. S., Lee, S. H., Jeong, S. N., Kim, Y. C. and Kim, E. C.(2009). Anti-inflammatory effects of apigenin on nicotineandlipopolysaccharide-stimulated human periodontal ligamentcells via heme oxygenase-1. Int. Immunopharmacol. 9,1374-1380. https://doi.org/10.1016/j.intimp.2009.08.015
  21. Kelly, P. A., Wang, H., Napoli, K. L., Kahan, B. D. and Strobel,H. W. (1999). Metabolism of cyclosporine by cytochromesP450 3A9 and 3A4. Eur. J. Drug. Metab. Pharmacokinet. 24,321-328. https://doi.org/10.1007/BF03190040
  22. Kimura, Y., Ito, H., Ohnishi, R. and Hatano, T. (2010). Inhibitoryeffects of polyphenols on human cytochrome P450 3A4 and2C9 activity. Food. Chem. Toxicol. 48, 429-435. https://doi.org/10.1016/j.fct.2009.10.041
  23. Lee, S. H., Yoo, S. D. and Lee, K. H. (1999). Rapid and sensitivedetermination of paclitaxel in mouse plasma byhigh-performance liquid chromatography. J. Chomatogr. B.Biomed. Sci. 724, 357-363. https://doi.org/10.1016/S0378-4347(98)00566-0
  24. Lewis, D. F. V. (1996). Cytochrome P450. Substrate specificityand metabolism. In Cytochromes P450. Structure, Function,and Mechanism (D. F. V. Lewis, Ed.), pp. 122-123. Taylor &Francis, Bristol.
  25. Li, X. and Choi J. S. (2007). Effect of genistein on the pharmacokineticsof paclitaxel administered orally or intravenouslyin rats. Int. J. Pharm. 337, 188-193. https://doi.org/10.1016/j.ijpharm.2007.01.002
  26. Meerum Terwogt, J. M., Malingre, M. M., Beijnen, J. H., tenBokkel Huinink, W. W., Rosing, H., Koopman, F. J., vanTellingen, O., Swart, M. and Schellens, J. H. (1999). Coadministrationof oral cyclosporin A enables oral therapy withpaclitaxel. Clin. Cancer Res. 5, 3379-3384.
  27. Nafisi, S., Hashemi, M. and Rajabi, M. (2008). DNA Adductswith Antioxidant Flavonoids: Morin, Apigenin, and Naringin.DNA and Cell Biology 27, 1-10. https://doi.org/10.1089/dna.2008.1500
  28. Nguyen, H., Zhang, S. and Morris, M. E. (2003). Effect offlavonoids on MRP1-mediated transport in Panc-1 cells. J.Pharm. Sci. 92, 250-257. https://doi.org/10.1002/jps.10283
  29. Rahman, A., Korzekwa, K. R., Grogan, J., Gonzalez, F. J. andHarris, J. W. (1994). Selective biotransformation of taxol to 6alpha-hydroxytaxol by human cytochrome P450 2C8.Cancer Res. 54, 5543-5546.
  30. Rowinsky, E. K., Eisenhauer, E. A., Chaudhry, V., Arbuck, S. G.and Donehower, R. C. (1993).Clinical toxicities encounteredwith paclitaxel (Taxol). Semin. Oncol. 20, 1-15.
  31. Sonnichsen, D. S., Liu, Q., Schuetz, E. G., Schuetz, J. D.,Pappo, A. and Relling, M. V. (1995). Variability in humancytochrome P450 paclitaxel metabolism. J. Pharmacol. Exp.Ther. 27, 566-575.
  32. Sparreboom, A., van Asperen, J., Mayer, U., Schinkel, A. H.,Smit, J. W., Meijer, D. K., Borst, P., Nooijen, W. J., Beijnen,J. H. and van Tellingen, O. (1997). Limited oral bioavailabilityand active epithelial excretion of paclitaxel (Taxol) caused byP-glycoprotein in the intestine. Proc. Natl. Acad. Sci. USA. 4,2031-2035.
  33. van Asperen, J., van Tellingen, O., van der Valk, M. A.,Rozenhart, M. and Beijnen, J. H. (1998). Enhanced oralabsorption and decreased elimination of paclitaxel in micecotreated with cyclosporine A. Clin. Cancer Res. 4, 2293-2297.
  34. Walle, T., Walle, U. K., Kuma, G. N. and Bhalla, K. N. (1995).Taxol metabolism and disposition in cancer patients. DrugMetab. Disp. 23, 506-512.
  35. Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P. and McPhail,A. T. (1971). Plant antitumor agnets. VI. The isolation andstructure of taxol, a novel antileukemic and antitumor agentfrom Taxus brevifolia. J. Am. Chem. Soc. 93, 2325-2327. https://doi.org/10.1021/ja00738a045
  36. Woo, J. S., Lee, C. H., Shim, C. K. and Hwang, S. J. (2003).Enhanced oral bioavailability of paclitaxel by coadministrationof the P-gp inhibitor KR30031. Pharm. Res. 20,24-30. https://doi.org/10.1023/A:1022286422439
  37. Yin, Y., Gong, F. Y., Wu, X. X., Sun, Y., Li, Y. H., Chen, T. andXu, Q. (2008). Anti-inflammatory and immunosuppressiveeffect of flavones isolated from Artemisia vestita. J. Ethnopharmacol.120, 1-6. https://doi.org/10.1016/j.jep.2008.07.029

Cited by

  1. Pharmacokinetic properties and drug interactions of apigenin, a natural flavone vol.13, pp.3, 2017, https://doi.org/10.1080/17425255.2017.1251903
  2. Comparative Study on Excretive Characterization of Main Components in Herb Pair Notoginseng-Safflower and Single Herbs by LC–MS/MS vol.10, pp.4, 2010, https://doi.org/10.3390/pharmaceutics10040241