DOI QR코드

DOI QR Code

Neuroprotective Effects of Carpinus tschonoskii MAX on 6-Hydroxydopamine-Induced Death of PC12 Cells

  • Kim, Min-Kyoung (Department of Pharmacology, School of Medicine, Institute of Medical Sciences, Jeju National University) ;
  • Kim, Sang-Cheol (Department of Pharmacology, School of Medicine, Institute of Medical Sciences, Jeju National University) ;
  • Kang, Jung-Il (Department of Pharmacology, School of Medicine, Institute of Medical Sciences, Jeju National University) ;
  • Boo, Hye-Jin (Department of Pharmacology, School of Medicine, Institute of Medical Sciences, Jeju National University) ;
  • Hyun, Jin-Won (Department of Biochemistry, School of Medicine, Institute of Medical Sciences, Jeju National University) ;
  • Koh, Young-Sang (Department of Microbiology, School of Medicine, Institute of Medical Sciences, Jeju National University) ;
  • Park, Deok-Bae (Department of Histology, School of Medicine, Institute of Medical Sciences, Jeju National University) ;
  • Yoo, Eun-Sook (Department of Pharmacology, School of Medicine, Institute of Medical Sciences, Jeju National University) ;
  • Kang, Ji-Hoon (Department of Neurology, School of Medicine, Institute of Medical Sciences, Jeju National University) ;
  • Kang, Hee-Kyoung (Department of Pharmacology, School of Medicine, Institute of Medical Sciences, Jeju National University)
  • Received : 2010.08.27
  • Accepted : 2010.10.14
  • Published : 2010.10.31

Abstract

The present study investigated the neuroprotective effect of Carpinus tschonoskii MAX and its intracellular protective mechanism on 6-hydroxydopamine (6-OHDA)-induced oxidative damage in PC12 cells. We found that pretreatment of PC12 cells with C. tschonoskii extract significantly inhibited the cell death induced by 6-OHDA in a dose dependent manner. C. tschonoskii extract decreased 6-OHDA-induced apoptotic events such as chromatin condensation, DNA fragmentation, the decrease of Bcl-2/Bax ratio, caspase-3 activation and PARP cleavage. C. tschonoskii extract also reduced generation of 6-OHDA-induced reactive oxygen species and nitric oxide. Furthermore, C. tschonoskii extract up-regulated the myocyte enhancer factor 2 D (MEF2D), a critical transcription factor for neuronal survival, and Akt activity, whereas it inhibited the activity of ERK1/2 and JNK. The results suggest that C. tschonoskii extract decreases 6-OHDA-induced oxidative stress and could prevent PC12 cell apoptosis induced by 6-OHDA via the up-regulation of MEF2D and Akt activity, and thus may have application in developing therapeutic agents for Parkinson's disease.

Keywords

References

  1. Abad, F., Maroto, R., Lopez, M. G., Sánchez-García, P. andGarcía, A. G. (1995). Pharmacological protection against thecytotoxicity of 6-hydroxydopamine and $H_2O_2$ in chromaffincells. Eur. J. Pharmacol. 293, 55-64. https://doi.org/10.1016/0926-6917(95)90018-7
  2. Black, B. L. and Olson, E. N. (1998). Transcriptional control ofmuscle development by myocyte enhancer factor-2 (MEF2)proteins. Annu. Rev. Cell Dev. Biol. 14, 167-196. https://doi.org/10.1146/annurev.cellbio.14.1.167
  3. Blum, D., Torch, S., Lambeng, N., Nissou, M., Benabid, A. L.,Sadoul, R. and Verna J. M. (2001). Molecular pathwaysinvolved in the neurotoxicity of 6-OHDA, dopamine andMPTP: contribution to the apoptotic theory in Parkinson’sdisease. Pro. Neurobiol. 65, 135-172. https://doi.org/10.1016/S0301-0082(01)00003-X
  4. Bournival, J., Quessy, P. and Martinoli, M. G. (2009). Protectiveeffects of resveratrol and quercetin against MPP+ -inducedoxidative stress act by modulating markers of apoptoticdeath in dopaminergic neurons. Cell Mol. Neurobiol. 29,1169-1180. https://doi.org/10.1007/s10571-009-9411-5
  5. Bove, J., Prou, D., Perier, C. and Przedborski, S. (2005). Toxininducedmodels of Parkinson's disease. NeuroRx. 2, 484-494. https://doi.org/10.1602/neurorx.2.3.484
  6. Brunet, A., Datta, S. R. and Greenberg, M. E. (2001). Transcriptiondependentand -independent control of neuronal survival bythe PI3K-Akt signaling pathway. Curr. Opin. Neurobiol. 11,297-305. https://doi.org/10.1016/S0959-4388(00)00211-7
  7. Chang, C. S. and Jeon, J. I. (2004). Foliar flavonoids of Carpinus,sect. Distegocarpus in eastern Asia. Biochem. Syst.Ecol. 32, 35-44. https://doi.org/10.1016/S0305-1978(03)00186-8
  8. Choi, W. S., Yoon, S. Y., Oh, T. H., Choi, E. J., O'Malley, K. L.and Oh, Y. J. (1999). Two distinct mechanisms are involvedin 6-hydroxydopamine- and MPP+-induced dopaminergiccell death: role of caspases, ROS and JNK. J. Neurosci.Res. 57, 86-94. https://doi.org/10.1002/(SICI)1097-4547(19990701)57:1<86::AID-JNR9>3.0.CO;2-E
  9. Chong, Z. Z., Li, F. and Maiese, K. (2005). Activating Akt andthe brain’s resources to drive cellular survival and preventinflammatory injury. Histol. Histopathol. 20, 299-315.
  10. Decker, D. E., Althaus, J. S., Buxser, S. E., VonVoigtlander, P.F. and Ruppel, P. L. (1993). Competitive irreversible inhibitionof dopamine uptake by 6-hydroxydopamine. Res. Commun.Chem. Pathol. Pharmacol. 79,195-208.
  11. Gong, X., Tang, X., Wiedmann, M., Wang, X., Peng, J., Zheng,D., Blair, L. A., Marshall, J. and Mao, Z. (2003). Cdk5-mediated inhibition of the protective effects of transcriptionfactor MEF2 in neurotoxicity-induced apoptosis. Neuron 38,33-46. https://doi.org/10.1016/S0896-6273(03)00191-0
  12. Greggio, E. and Singleton, A. (2007). Kinase signaling pathwaysas potential targets in the treatment of Parkinson'sdisease. Expert Rev. Proteomics. 4, 783-792. https://doi.org/10.1586/14789450.4.6.783
  13. Heikkila, R. and Cohen, G. (1972). Inhibition of biogenic amineuptake by hydrogen peroxide: mechanism for toxic effects of6-hydroxydopamine. Science 172, 1257-1258.
  14. Jenner, P. and Olanow, C. W. (1996). Oxidative stress and thepathogenesis of Parkinson's disease. Neurology 47, S161-170. https://doi.org/10.1212/WNL.47.6_Suppl_3.161S
  15. Jeon, J. I., Chang, C. S., Chen, Z. D. and Park, T. Y. (2007).Systematic aspects of foliar flavonoids in subsect. Carpinus(Carpinus, Betulaceae). Biochem. Syst. Ecol. 35, 606-613. https://doi.org/10.1016/j.bse.2007.04.004
  16. Jiang, Z. and Yu, P. H. (2005). Involvement of extracellularsignal-regulated kinases 1/2 and (phosphoinositide 3-kinase)/Akt signal pathways in acquired resistance against neurotoxinof 6-hydroxydopamine in SH-SY5Y cells following cellcellinteraction with astrocytes. Neuroscience 133, 405-411. https://doi.org/10.1016/j.neuroscience.2005.02.028
  17. Kim, M. K., Kim, S. C., Kang, J. I., Hyun, J. H., Boo, H. J., Eun,S. Y., Park, D. B., Yoo, E. S., Kang, H. K. and Kang, J. H.6-Hydroxydopamine-induced death of PC12 cells is mediatedby MEF2D down-regulation. Neurochem. Res. In revision.
  18. Kulich, S. M., Horbinski, C., Patel, M. and Chu, C. T. (2007).6-Hydroxydopamine induces mitochondrial ERK activation.Free Radic. Biol. Med. 43, 372-383. https://doi.org/10.1016/j.freeradbiomed.2007.04.028
  19. Kumar, R., Agarwal, M. L. and Seth, P. K. (1995). Free radicalgeneratedneurotoxicity of 6-hydroxydopamine. J. Neurochem.64, 1703-1707. https://doi.org/10.1046/j.1471-4159.1995.64041703.x
  20. Li, M., Linseman, D. A., Allen, M. P., Meintzer, M. K., Wang, X.,Laessig, T., Wierman, M. E. and Heidenreich, K. A. (2001).Myocyte enhancer factor 2A and 2D undergo phosphorylationand caspase-mediated degradation during apoptosisof rat cerebellar granule neurons. J. Neurosci. 21, 6544-6552. https://doi.org/10.1523/JNEUROSCI.21-17-06544.2001
  21. Liu, L., Cavanaugh, J. E., Wang, Y., Sakagami, H., Mao, Z. andXia, Z. (2003). ERK5 activation of MEF2-mediated geneexpression plays a critical role in BDNF-promoted survival ofdeveloping but not mature cortical neurons. Proc. Natl. Acad.Sci. USA. 100, 8532-8537. https://doi.org/10.1073/pnas.1332804100
  22. Lotharius, J., Dugan, L. L. and O’Malley, K. L. (1999). Distinctmechanisms underlie neurotoxin-mediated cell death incultured dopaminergic neurons. J. Neurosci. 19, 1284-1293. https://doi.org/10.1523/JNEUROSCI.19-04-01284.1999
  23. Mao, Z., Bonni, A., Xia, F., Nadal-Vicens, M. and Greenberg, M.E. (1999). Neuronal activity-dependent cell survival mediatedby transcription factor MEF2. Science 286, 785-790. https://doi.org/10.1126/science.286.5440.785
  24. Mao, Z. and Wiedmann, M. (1999). Calcineurin enhances MEF2DNA binding activity in calcium-dependent survival ofcerebellar granule neurons. J. Biol. Chem. 274, 31102-31107. https://doi.org/10.1074/jbc.274.43.31102
  25. Mercer, L. D., Kelly, B. L., Horne, M. K., Beart, P. M. (2005).Dietary polyphenols protect dopamine neurons from oxidativeinsults and apoptosis: investigations in primary ratmesencephalic cultures. Biochem. Pharmacol. 69, 339-345. https://doi.org/10.1016/j.bcp.2004.09.018
  26. Nie, G., Jin, C., Cao, Y., Shen, S. and Zhao, B. (2002). Distincteffects of tea catechins on 6-hydroxydopamine-inducedapoptosis in PC12 cells. Arch. Biochem. Biophys. 397, 84-90. https://doi.org/10.1006/abbi.2001.2636
  27. Okamoto, S., Krainc, D. and Sherman, K. (2000). Antiapoptoticrole of the p38 mitogen-activated protein kinase-myocyteenhancer factor 2 transcription factor pathway duringneuronal differentiation. Proc. Natl. Acad. Sci. USA. 97,7561-7566 https://doi.org/10.1073/pnas.130502697
  28. Perumal, A. S., Tordzro, W. K., Katz, M., Jackson-Lewis, V.,Cooper, T. B., Fahn, S. and Cadet, J. L. (1989). Regionaleffects of 6-hydroxydopamine on free radical scavengers inthe rat brain. Brain Res. 504, 139-141. https://doi.org/10.1016/0006-8993(89)91611-9
  29. Przedborski, S. and Ischiropoulos, H. (2005). Reactive oxygenand nitrogen species: weapons of neuronal destruction inmodels of Parkinson's disease. Antioxid. Redox Signal 7,685-693. https://doi.org/10.1089/ars.2005.7.685
  30. Rosenkranz, A. R., Schmaldienst, S., Stuhlmeier, K. M., Chen,W., Knapp, W. and Zlabinger, G. J. (1992). A microplateassay for the detection of oxidative products using 2',7'-dichlorofluorescin-diacetate. J. Immunol. Methods. 25, 39-45.
  31. Saito, Y., Nishio, K., Ogawa, Y., Kinumi, T., Yoshida, Y., Masuo,Y. and Niki, E. (2007). Molecular mechanisms of 6-hydroxydopamine-induced cytotoxicity in PC12 cells: involvement ofhydrogen peroxide-dependent and -independent action.Free Radic. Biol. Med. 42, 675-685. https://doi.org/10.1016/j.freeradbiomed.2006.12.004
  32. Sako, K., Fukuhara, S., Minami, T., Hamakubo, T., Song, H.,Kodama, T., Fukamizu A., Gutkind, J. S., Koh, G. Y. andMochizuki, N. (2009). Angiopoietin-1 induces Kruppel-likefactor 2 expression through a phosphoinositide 3-kinase/AKT-dependent activation of myocyte enhancer factor 2. J.Biol. Chem. 284, 5592-5601. https://doi.org/10.1074/jbc.M806928200
  33. Scudiero, D. A., Shoemaker, R. H., Paull, K. D., Monks, A.,Tierney, S., Nofziger, T. H., Currens, M. J., Seniff, D. andBoyd, M. R. (1988). Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in cultureusing human and other tumor cell lines. Cancer Res. 48,4827-4833.
  34. Shim, J. S., Kim, H. G., Ju, M. S., Choi, J. G., Jeong, S. Y. andOh, M. S. (2009). Effects of the hook of Uncaria rhynchophyllaon neurotoxicity in the 6-hydroxydopamine model ofParkinson's disease. J. Ethnopharmacol. 126, 361-365. https://doi.org/10.1016/j.jep.2009.08.023
  35. Shimoke, K. and Chiba, H. (2001). Nerve growth factor prevents1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced celldeath via the Akt pathway by suppressing caspase-3-likeactivity using PC12 cells: relevance to therapeutical applicationfor Parkinson's disease. J. Neurosci. Res. 63, 402-409. https://doi.org/10.1002/1097-4547(20010301)63:5<402::AID-JNR1035>3.0.CO;2-F
  36. Smith, P. D., Mount, M. P., Shree, R., Callaghan, S., Slack, R.S., Anisman H., Vincent, I., Wang, X., Mao, Z. and Park, D.S. (2006). Calpain-regulated p35/cdk5 plays a central role indopaminergic neuron death through modulation of the transcriptionfactor myocyte enhancer factor 2. J. Neurosci. 11,440-447.
  37. Subramaniam, S. and Unsicker, K. (2006). Extracellular signalregulatedkinase as an inducer of non-apoptotic neuronaldeath. Neuroscience 138, 1055-1065. https://doi.org/10.1016/j.neuroscience.2005.12.013
  38. Tang, X., Wang, X., Gong, X., Tong, M., Park, D., Xia, Z. andMao, Z. (2005). Cyclin-dependent kinase 5 mediates neurotoxin-induced degradation of the transcription factor myocyteenhancer factor 2. J. Neurosci. 25, 4823-4834. https://doi.org/10.1523/JNEUROSCI.1331-05.2005
  39. Veeranna, G. J., Shetty, K. T., Takahashi, M., Grant, P. andPant, H. C. (2000). Cdk5 and MAPK are associated withcomplexes of cytoskeletal proteins in rat brain. Mol. BrainRes. 76, 229-236. https://doi.org/10.1016/S0169-328X(00)00003-6
  40. Zhang, R., Kang, K. A., Piao, M. J., Park, J. W., Shin, T., Yoo, B.S., Yang, Y. T. and Hyun, J. W. (2007). Cytoprotective Activityof Carpinus tschonoskii against $H_2O_2$ Induced OxidativeStress. Natural Product Sciences 13, 118-122.

Cited by

  1. Eucommia ulmoides Oliv. bark. attenuates 6-hydroxydopamine-induced neuronal cell death through inhibition of oxidative stress in SH-SY5Y cells vol.152, pp.1, 2014, https://doi.org/10.1016/j.jep.2013.12.048
  2. Eucommia ulmoides Oliv. Bark. protects against hydrogen peroxide-induced neuronal cell death in SH-SY5Y cells vol.142, pp.2, 2012, https://doi.org/10.1016/j.jep.2012.04.010
  3. Lonicera japonica THUNB. protects 6-hydroxydopamine-induced neurotoxicity by inhibiting activation of MAPKs, PI3K/Akt, and NF-κB in SH-SY5Y cells vol.50, pp.3-4, 2012, https://doi.org/10.1016/j.fct.2011.12.026
  4. Sulfuretin inhibits 6-hydroxydopamine-induced neuronal cell death via reactive oxygen species-dependent mechanisms in human neuroblastoma SH-SY5Y cells vol.74, 2014, https://doi.org/10.1016/j.neuint.2014.04.016
  5. RAW 264.7 세포에서 Carpinus pubescens Burkill 추출물의 항산화 및 항염증 활성 vol.44, pp.2, 2010, https://doi.org/10.4014/mbl.1509.09004
  6. Anti-acne vulgaris effect including skin barrier improvement and 5α-reductase inhibition by tellimagrandin I from Carpinus tschonoskii vol.19, pp.1, 2010, https://doi.org/10.1186/s12906-019-2734-y