DOI QR코드

DOI QR Code

Effects of Nitrogen Additive Gas on the Property of Active Layer and the Device Characteristic in Indium-zinc-oxide thin Film Transistors

산화인듐아연 박막 트랜지스터에서 질소 첨가가스가 활성층의 물성 및 소자의 특성에 미치는 영향

  • 이상혁 (한양대 공대 전자전기제어계측공학과) ;
  • 방정환 (한양대 공대 전자전기제어계측공학과) ;
  • 김원 (한양대 공대 전자전기제어계측공학과) ;
  • 엄현석 (한양대 공대 전자전기제어계측공학과) ;
  • 박진석 (한양대 전자전기제어계측공학과)
  • Received : 2010.09.13
  • Accepted : 2010.10.23
  • Published : 2010.11.01

Abstract

Indium-zinc-oxide (IZO) films were deposited at room temperature via RF sputtering with varying the flow rate of additive nitrogen gas ($N_2$). Thin film transistors (TFTs) with an inverted staggered configuration were fabricated by employing the various IZO films, such as $N_2$-added and pure (i.e., w/o $N_2$-added), as active channel layers. For all the deposited IZO films, effects of additive $N_2$ gas on their deposition rates, electrical resistivities, optical transmittances and bandgaps, and chemical structures were extensively investigated. Transfer characteristics of the IZO-based TFTs were measured and characterized in terms of the flow rate of additive $N_2$ gas. The experimental results indicated that the transistor action occurred when the $N_2$-added (with $N_2$ flow rate of 0.4-1.0 sccm) IZO films were used as the active layer, in contrast to the case of using the pure IZO film.

Keywords

References

  1. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-j. Cho, and H. Morkoc, J. Appl. Phys, 98 (2005) p.041301 https://doi.org/10.1063/1.1992666
  2. D. C. Paine, B. Yaglioglu, Z. Beiley, and S. H. Lee, Thin Solid Films, 516 (2008) p.5894 https://doi.org/10.1016/j.tsf.2007.10.081
  3. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, and H. Kumoni, Appl. Phys. Lett, 89 (2006) p.112123 https://doi.org/10.1063/1.2353811
  4. K. S. Jang, H. S. Park, S. W. Jung, N. V. Duy, Y. K. Kim, J. H. Cho, H. W. Choi, Y. Y. Kwon, W. B. Lee, D. Y. Gong, S. M. Park, J. S. Yi, D. Y. Kim, and H. J. Kim, Thin Solid Films, 518 (2010) p.2808 https://doi.org/10.1016/j.tsf.2009.08.036
  5. E. Fortunato, P. Barquinha, A. Pimentel, L. Pereira, G. Goncalves, and R. Martins, Phys. Stat. Sol. (RRL), 1(1) (2007) p.R34 https://doi.org/10.1002/pssr.200600049
  6. P. Barquinha, G. Goncalves, L. Pimentel, L. Pereira, G. Goncalves, and R. Martins, Thin Solid Films, 515 (2007) p.8450 https://doi.org/10.1016/j.tsf.2007.03.176
  7. D. Hong and J. F. Wager, J. Vac. Sci. Technol. B, 23 (2005) p.25 https://doi.org/10.1116/1.2127954
  8. T. Nosaka, M. Yoshitake, A. Okamoto, S. Ogawa, Y. Nakayama, Thin Solid Films, 348 (1999) p.8 https://doi.org/10.1016/S0040-6090(98)01776-3
  9. S. H. Lee, J. H. Bang, W. Kim, H. S. Uhm, and J. S. Park, Proc. KIEE Summer Conference, 41 (2010) p.355
  10. Y. K. Moon, S. H. Lee, D. H. Kim, D. H. Lee, C. O. Jeong, and J. W. Park, Jpn. Appl. Phys. 48 (2009) p.031301 https://doi.org/10.1143/JJAP.48.031301
  11. L. Boukhris and J.-M. Poitevin, Thin Solid Films, 310 (1997) p.222 https://doi.org/10.1016/S0040-6090(97)00348-9
  12. S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, Appl. Phys. Lett. 49 (1986) p.394 https://doi.org/10.1063/1.97598
  13. S. H. Jeong, B. S. Kim, and B. T. Lee, Appl. Phys. Lett, 82 (2003) p.2625 https://doi.org/10.1063/1.1568543
  14. L. C. Chao, Y. R. Shih, Y. K. Li, J. W. Chen, J. D. Wu, and C. H. Ho, Appl. Surf. Sci. 256 (2010) p.4153 https://doi.org/10.1016/j.apsusc.2010.02.001
  15. B. E. Sernelius, K. F. Berggren, Z. C. Jin, I. Hamberg, and C. G. Granqvist, Phy. Rev. B, 37 (1988) p.10244 https://doi.org/10.1103/PhysRevB.37.10244
  16. S. J. Lim, J. M. Kim, D. Y. Kim, S. J. Kwon, J. S. Park, and H. J. Kim, J. Electrochem. Soc. 157 (2010) p.H214 https://doi.org/10.1149/1.3269973