DOI QR코드

DOI QR Code

Increase in the Chlorophyll Contents by Over-expression of GmNAP1 Gene in Arabidopsis Plant

애기장대에서 GmNAP1의 과발현으로 인한 엽록소 함량 증가

  • Park, Phun-Bum (Department of Bioscience and Biotechnology, University of Suwon) ;
  • Ahn, Chul-Hyun (Department of Bioscience and Biotechnology, University of Suwon)
  • 박훤범 (수원대학교 생명공학과) ;
  • 안철현 (수원대학교 생명공학과)
  • Received : 2010.09.12
  • Accepted : 2010.10.02
  • Published : 2010.10.30

Abstract

In the course of a research concerning the molecular mechanism of hypocotyl elongation that occurs during soybean seedling growth in darkness, we have generated a number of ESTs from a cDNA library prepared from the hypocotyls of dark-grown soybean seedlings. Comparison of the ESTs assigned a cDNA clone as a putative plastidic ATP-binding-cassette (ABC) protein homologue. The soybean GmNAP1 protein contains an N-terminal transit peptide which targets it into the chloroplast. The transcription level of the GmNAP1 gene was investigated under continuous red light, continuous far-red light, and complete darkness. The main function of this NAP1 protein is the transport of protoporphyrin IX which is the precursor of chlorophyll from the cytoplasm to the chloroplast. The GmNAP1 gene was transferred into the Arabidopsis under the CaMV 35S promoter. The chlorophyll level of this transgenic Arabidopsis plant was much higher than the chlorophyll level of the wild type Arabidopsis plant.

암(dark) 상태에서 재배한 대두의 하배축 길이 생장의 분자 기작을 연구하기 위한 일환으로 암 상태에서 재배한 대두 하배축으로부터 cDNA library를 제작한 후 ESTs를 구축하였다. 이들 ESTs 중 색소체 ABC 단백질과 아미노산 서열이 매우 유사한 clone을 선발한 후 이 유전자의 전체염기서열을 결정하였다. GmNAP1 단백질은 엽록체로 향하는 transit peptide 서열이 존재한다. 빛에 의해 GmNAP1 유전자 전사가 어떻게 변화되는지 알아보기 위해 지속적인 적색광, 근적색광 그리고 암 상태에서 성장시키면서 유전자의 전사량을 확인하였다. 이 색소체 NAP1는 엽록소의 전구 물질인 protoporphytin IX를 세포질에서 엽록체로 이동시키는 기능을 한다. 대두에서 분리된 GmNAP1 유전자의 기능을 확인하기 위하여 35S 프로모터 뒤에 GmNAP1 유전자를 접합한 후 애기장대에 형질전환하였다. 형질전환 된 애기장대의 엽록소 함량은 야생형의 엽록소 함량보다 훨씬 높게 측정되었다.

Keywords

References

  1. Dassa, E. and P. Bouige. 2001. The ABC of ABCs: a phylogenetic and functional classification of ABC systems in living organisms. Res. Microbiol. 152, 211-229. https://doi.org/10.1016/S0923-2508(01)01194-9
  2. Hedtke, B., I. Wagner, T. Borner, and W. R. Hess. 1999. Inter-organellar crosstalk in higher plants: impaired chloroplast development affects mitochondrial gene and transcript levels. Plant J. 19, 635-643. https://doi.org/10.1046/j.1365-313x.1999.00554.x
  3. Holland, B. I. and M. A. Blight. 1999. ABC-ATPases, adaptable energy generators fuelling transmembrane movement of a variety of molecules in organisms from bacteria to humans. J. Mol. Biol. 293, 381-399. https://doi.org/10.1006/jmbi.1999.2993
  4. Keegstra, K. and K. Cline. 1999. Protein import and routing systems of chloroplasts. Plant Cell 11, 557-570. https://doi.org/10.1105/tpc.11.4.557
  5. Larkin, R. M., J. M. Alonso, J. R. Ecker, and J. Chory. 2003. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299, 902-906. https://doi.org/10.1126/science.1079978
  6. Loiseau, L., S. Ollagnier-de-Choudens, L. Nachin, M. Fontecave, and F. Barras. 2003. Biogenesis of Fe-S cluster by the bacterial Suf system: SufS and SufE form a new type of cysteine desulfurase. J. Biol. Chem. 278, 38352-38359. https://doi.org/10.1074/jbc.M305953200
  7. Moller, S. G., T. Kunkel, and N. H. Chua. 2001. A plastidic ABC protein involved in intercompartmental communication of light signaling. Genes Dev. 15, 90-103. https://doi.org/10.1101/gad.850101
  8. Nachin, L., L. Loiseau, D. Expert, and F. Barras. 2003. SufC: an unorthodox cytoplasmic ABC/ATPase required for [Fe-S] biogenesis under oxidative stress. EMBO J. 22, 427-437. https://doi.org/10.1093/emboj/cdg061
  9. Osteryoung, K. W. and J. Nunnari. 2003. The division of endosymbiotic organelles. Science 302, 1698-1704. https://doi.org/10.1126/science.1082192
  10. Rangachari, K., C. T. Davis, J. F. Eccleston, E. M. A. Hirst, and J. W. Saldanha. 2002. SufC hydrolyzes ATP and interacts with SufB from Thermotoga maritima. FEBS Lett. 74, 225-228. https://doi.org/10.1016/0014-5793(77)80851-X
  11. Rea, P. A. 2007. Plant ATP-Binding Cassette Transporters. Annu. Rev. Plant Biol. 58, 347-375. https://doi.org/10.1146/annurev.arplant.57.032905.105406
  12. Sanchez-Fernandez, R., T. G. E. Davies, J. O. D. Coleman, and P. A. Rea. 2001. The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J. Biol. Chem. 276, 30231-30244. https://doi.org/10.1074/jbc.M103104200
  13. Seo, K. Y, Y. H. Son, and J. W. Koo. 2005. Extraction and determination of chlorophyll contents of Korean pine needles using acetone and DMSO (dimethylsulfoxide). J. Korean For. Soc. 4, 264-268.
  14. Strand, A., T. Asami, J. Alonso, J. R. Ecker, and J. Chory. 2003. Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrin IX. Nature 421, 79-82. https://doi.org/10.1038/nature01204
  15. Takahashi, Y. and U. Tokumoto. 2002. A third bacterial system for the assembly of iron-sulfur clusters with homologs in archaea and plastids. J. Biol. Chem. 277, 28380-28383. https://doi.org/10.1074/jbc.C200365200
  16. Xu, X. M., S. Adams, N. H. Chua, and S. G. Moller. 2005. AtNAP1 represents an atypical SufB protein in Arabidopsis plastids. J. Biol. Chem. 280, 6648-6654. https://doi.org/10.1074/jbc.M413082200
  17. Xu, X. M. and S. G. Møller. 2004. AtNAP7 is a plastidic SufC-like ATP-binding cassette/ATPase essential for Arabidopsis embryogenesis. Proc. Natl. Acad. Sci. 101, 9143-9148. https://doi.org/10.1073/pnas.0400799101