DOI QR코드

DOI QR Code

Manufacturing of Iron Binding Peptide Using Sericin Hydrolysate and Its Bioavailability in Iron Deficient Rat

실크 세리신 단백질을 이용한 유기 철분제의 제조 및 철분 결핍쥐에서의 생물학적 유용성

  • Received : 2010.07.07
  • Accepted : 2010.08.02
  • Published : 2010.10.31

Abstract

Silk sericin protein was hydrolyzed by seven proteolytic enzymes to examine the effectiveness of the hydrolysates to bind iron. The amino acid nitrogen contents of hydrolysates by Flavourzyme were higher than the others enzymes, and its iron binding capacity showed dose-dependent increase. The bioavailability of iron binding peptide from sericin hydolysates was investigated in iron-deficient rats. Three-week-old male rats were fed iron-deficient diet for three weeks. Rats were divided into four groups (DD: no treated group on iron deficient diet, DD+HI: heme-iron treated group, DD+OI: sericin-Fe, and DD+II: inorganic iron ($FeSO_4$) treated group, and then iron supplemented by injection for one week. After oral administration for one week, the iron contents of serum and liver were significantly higher in DD+OI ($4.2\;{\mu}g/mL$ and $80.1\;{\mu}g/mL$) and DD+HI ($3.2\;{\mu}g/mL$ and $70.6\;{\mu}g/mL$) than DD ($2.0\;{\mu}g/mL$ and $47.9\;{\mu}g/mL$). Hemoglobin content of treated groups was significantly higher than DD, but the significant difference among groups was not shown. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels did not show any significant difference among all groups. Binding iron to peptide from sericin hydolysates seems to improve its bioavailability and to hasten the cure of iron deficiency in experimental rat.

세리신을 철분과 결합력이 우수한 가수분해물을 제조하기 위하여 다양한 효소 처리를 실시하였으며 세리신 가수분해물을 이용하여 철분과 결합력을 검토하였다. 고분자인 세리신 단백질 분말을 효소 처리하지 않은 control과 비교한 결과 Flavourzyme(16.2 mg/mL)을 처리한 경우 유리 아미노산의 함량이 유의적으로 증가하였다. Flavourzyme 세리신 가수분해물에 각각 1,000 ppm과 2,000 ppm의 $FeSO_4$을 넣어 교반한 후 80%에탄올 침전 후 얻은 상등액과 침전물을 Fe 함량을 측정한 결과 유기철분 1,000 ppm의 철분의 양은 상등액($7.8\;{\mu}g/mL$)에 비해 침전($191.5\;{\mu}g/mL$)이 높은 값을 나타내며 유기철분 2,000 ppm 역시도 상등액($8.5\;{\mu}g/mL$)에 비해 침전($411.0\;{\mu}g/mL$)이 유의적으로 증가하였다. 2주간 철분 결핍 식이를 투여한 쥐를 4군으로 분리한 후 형태가 다른 3종의 철분을 1주간 투여한 결과 체중증가량이나 식이섭취율 및 식이효율을 측정한 결과 모든 투여군에서 군 간에 유의적인 차이가 없었다. 그러나 체내 흡수된 철분의 농도를 측정한 결과 혈청($2.0\;{\mu}g/mL$)과 간($47.9\;{\mu}g/mL$) 모두 무처치 대조군(DD)에서 가장 낮은 철분 농도가 관찰되었다. 형태를 달리한 철분을 투여한 모든 군에서 무처치 대조군보다 철분의 농도가 혈청 및 간에서 모두 유의적으로 증가하였다. 세리신을 이용하여 제조한 유기철분 투여군은 간에서 $80.1\;{\mu}g/mL$, 혈청에서 $4.2\;{\mu}g/mL$의 철분 농도가 관찰되었으며, 양성 대조군인 헴철 투여군에서는 간에서 $70.6\;{\mu}g/mL$, 혈청에서 $3.2\;{\mu}g/mL$의 철분 농도가 관찰되었으나 두 투여군 간의 유의적 차이는 없었다. 무기철분을 투여한 군(DD+II)보다는 간에서의 철분 함량($67.9\;{\mu}g/mL$)이 유의적으로 증가하는 경향을 나타내었으나 유기철분이나 헴철보다는 유의적인 수준에서 낮게 관찰되었다. 혈중 헤모글로빈 농도는 무처치 대조군(8.9 g/dL)에 비해 철분 처치군(DD+HI: 12.2 g/dL, DD+OI: 12.6 g/dL, DD+II: 12.0 g/dL)이 유의적으로 높았으나 철분의 형태에 따른 유의적 차이는 관찰되지 않았다.

Keywords

References

  1. Bezkorovainy A. 1989. Biochemistry of nonheme iron in man. II. Absorption of iron. Clin Physiol Biochem 7: 53-69.
  2. Ait-Oukhatar N, Peres JM, Bouhallab S, Neuville D, Bureau F, Bouvard G, Arhan P, Bougle D. 2002. Bioavailability of caseinophosphopeptide-bound iron. J Lab Clin Med 140: 290-294. https://doi.org/10.1067/mlc.2002.128146
  3. Domellof M. 2007. Iron requirements, absorption and metabolism in infancy and childhood. Curr Opin Clin Nutr Metab Care 10: 329-335. https://doi.org/10.1097/MCO.0b013e3280523aaf
  4. Cairo G, Bernuzzi F, Recalcati S. 2006. A precious metal: Iron, an essential nutrient for all cells. Genes Nutr 1: 25-39. https://doi.org/10.1007/BF02829934
  5. Beard JL. 2001. Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr 131: 568S-579S. https://doi.org/10.1093/jn/131.2.568S
  6. Mackenzie B, Garrick MD. 2005. Iron imports. II. Iron uptake at the apical membrane in the intestine. Am J Physiol Gastr L289: G981-G986.
  7. Lebrun F, Bazus A, Dhulster P, Guillochon D. 1998. Solubility of heme in heme-iron enriched bovine hemoglobin hydrolysates. J Agric Food Chem 46: 5017-5025. https://doi.org/10.1021/jf9805698
  8. Na SJ, Oh JI, Uuganbayar D, Jung DK, Kim HY, Moon ST, Yang CJ. 2006. Effects of dietary chelated Fe and yeast Fe on growth performance and body composition in broiler chicks. Korean J Poult Sci 33: 113-119.
  9. Chio IW, Kim KS, Lim SD, Lim SW. 1998. Iron binding peptides from casein hydrolsates produced by alcalase. Korean J Food Sci Technol 30: 218-223.
  10. Kim SB, Seo IS, Khan MA, Ki KS, Lee WS, Lee HJ, Shin HS, Kim HS. 2007. Enzymatic hydrolysis of heated whey: Iron-binding ability of peptides and antigenic protein fractions. J Dairy Sci 90: 4033-4042. https://doi.org/10.3168/jds.2007-0228
  11. Kim SB, Seo IS, Khan MA, Ki KS, Nam MS, Kim HS. 2007. Separation of iron-binding protein from whey through enzymatic hydrolysis. Int Dairy J 17: 625-631. https://doi.org/10.1016/j.idairyj.2006.09.001
  12. Seth A, Mahoney RR. 2000. Binding of iron by chicken muscle protein digests: the size of the iron-binding peptides. J Sci Food Agric 80: 1595-1600. https://doi.org/10.1002/1097-0010(20000901)80:11<1595::AID-JSFA684>3.0.CO;2-Y
  13. Lee KH. 2005. Application of silk sericin as a polymer material. Polymer Science and Technology 16: 577-587.
  14. Sasaki M, Yamada H, Kato N. 2000. Consumption of silk protein, sericin elevates intestinal absorption of zinc, iron, magnesium and calcium in rats. Nutr Res 20: 1505-1511.
  15. Worldway. 2001. Recovering method of sericin. Korean Patent 10-2001-0057987.
  16. Habeeb AF. 1966. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal Biochem 14: 328-336. https://doi.org/10.1016/0003-2697(66)90275-2
  17. Ferrando AA, Green NR, Barnes KW, Woodward B. 1993. Microwave digestion preparation and ICP determination of boron in human plasma. Biol Trace Elem Res 37: 17-25. https://doi.org/10.1007/BF02789398
  18. Pommer K. 1995. New proteolytic-enzymes for the production of savory ingredients. Cereal Food World 40: 745-748.
  19. Lee KG, Yeo JH, Lee YW, Kweon HY, Kim JH. 2001. Bioactive and skin-compatible properties of silk sericin. Korean J Seric Sci 43: 109-115.
  20. Yang MZ, Kim YJ, Part T. 2003. Effect of dietary supplementation of sypjeondaebotang or jahyulyanggeuntang on iron bioavailability in rats. Korean J Nutr 36: 262-269.
  21. Gautam CS, Saha L, Sekhri K, Saha PK. 2008. Iron deficiency in pregnancy and the rationality of iron supplements prescribed during pregnancy. Medscape J Med 10: 283.
  22. Cook JD. 1994. Iron-deficiency anaemia. Baillieres Clin Haematol 7: 787-804. https://doi.org/10.1016/S0950-3536(05)80124-6

Cited by

  1. Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines vol.61, 2016, https://doi.org/10.1016/j.msec.2015.12.082
  2. Bioavailability of Organic Selenium in Selenium-Deficient Rats vol.44, pp.9, 2015, https://doi.org/10.3746/jkfn.2015.44.9.1249
  3. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption vol.9, pp.6, 2017, https://doi.org/10.3390/nu9060609
  4. 효소 처리한 돈혈 활용 철분분말제제 특성 vol.23, pp.5, 2010, https://doi.org/10.11002/kjfp.2016.23.5.753
  5. The potential of silk sericin protein as a serum substitute or an additive in cell culture and cryopreservation vol.49, pp.6, 2017, https://doi.org/10.1007/s00726-017-2396-3