DOI QR코드

DOI QR Code

User-Centered Information Retrieving Method in Blogs

사용자 중심의 블로그 정보 검색 기법

  • Kim, Seung-Jong (Department of Computer Information, Hanyang Women's University)
  • 김승종 (한양여자대학 컴퓨터정보과)
  • Received : 2010.06.08
  • Accepted : 2010.09.08
  • Published : 2010.09.30

Abstract

Due to the recent tremendous growth of internet information, RSS, syndication technology provides internet users with a user-friendly information search. RSS enables you to automatically receive newly updated contents, so users do not need to constantly access web sites to obtain new information. This paper proposes the way of managing the web crawler, which collects the sites of RSS documents and helps the users efficiently use the RSS documents. And it also suggests the proper way of ranking the RSS documents based on the users' popularity. Users can efficiently search out the documents they need by using the proposed information searching methods.

최근 빠른 주기로 많은 양의 새로운 정보가 생성되기 때문에, 사용자 중심의 정보 검색을 위해 RSS라는 신디케이션 기술이 제공되고 있다. RSS는 새롭게 갱신된 콘텐츠를 자동으로 전달받을 수 있어 신규 정보를 찾기 위해 사이트에 지속적으로 접근하지 않아도 된다. 본 논문에서는 블로그 정보 검색을 위해 RSS 문서의 주소를 수집하는 수집기와 사용자 질의에 따른 RSS 문서의 순위결정 방법을 제안한다. 제안하는 정보 검색 기법을 이용하면 사용자가 RSS 문서를 효과적으로 검색할 수 있다.

Keywords

References

  1. KISTI, RSS를 이용한 웹페이지의 뉴스 피드 기능, 2005.
  2. World Wide Web Consortium, 2005.
  3. N. Agarwal and H. Liu, "Blogosphere: Research Issues, Tools, and Applications", SIGKDD Explorations, 10(1): 18 - 31, July, 2008. https://doi.org/10.1145/1412734.1412737
  4. K. C. Sia, J. Cho, C. Yun, B. L. Tseng, "Efficient Computation of Personal Aggregate Queries on Blogs", Proc. Knowledge Discovery and Data Mining Conf., ACM Press, pp. 632-640, 2008.
  5. A. Stewart, L. Chen, R. Paiu, and W. Nejdl, "Discovering Information Diffusion Paths From Blogosphere for Online Advertising", Proc. Workshop on Data Mining and Audience Intelligence for Advertising in conjunction with Knowledge Discovery and Data Mining, ACM Press, pp. 46-54, 2007.
  6. Bracha Shapira, et al., "Information Filtering: A New Two-Phase Model using Stereotypic User Profiling," Journal of Intelligent Information systems, Vol. 8, 1997.
  7. Czeslaw Danilowicz, Jaroslaw Balinski, "Document Ranking based upon Markov Chains", Information Processing and Management, Vol.37, pp. 623-637, 2001. https://doi.org/10.1016/S0306-4573(00)00038-8
  8. Kathleen Gilroy, Winning the Race for Knowledge Worker Productivity, A White Paper prepared for the Int. Conference on the National Communications Commission, pp. 3-23, 2005.
  9. RSS Technology Reports, 2005.
  10. PEW INTERNET & AMERICAN LIFE PROJECT, 2004.
  11. Weihong Huang, "Enabling Context-Aware Agents to Understand Semantic Resources on the WWW and The Semantic Web", Proc. of the IEEE/WIC/ACM International Conference on Web Intelligence, pp.138-144. 2004.
  12. Douglas W. OARD, "The State of the Art in Text filtering," User Modeling and User-adapted Interaction, vol.7, pp. 141-178, 1997. https://doi.org/10.1023/A:1008287121180
  13. Foltz, P. W, "Using Latent Semantic Indexing for Information Filtering," Proceedings of the Conference on Office Information Systems, Cambridge, MA, pp. 40-47, 1990.
  14. Passamo, M. and Billsus, D., "Learning and Revising User Profiles: the Identification of Interesting Web Sites", Machine Learning, Vol. 27, pp. 313-331, 1997. https://doi.org/10.1023/A:1007369909943
  15. Dwi H. Widyantoro, Thomas R. loerger, John Yen, "An Adaptive algorithm for Learning Changes in User Interests," 8th International Conference on Information and Knowledge Management(CIKM'99),November 2-6, Kansas city, 1999.
  16. Michael Persin, "Document Filtering for Fast Ranking," ACM-SIGIR, pp. 339-348, 1994.
  17. B. Yuwono, "Search and ranking algorithms for locating resources on World Wide Web", Proc. of the Int. Conf. on Data Engineering, pp. 164-171, 1996.
  18. Brin, S. & Page, L., "The Anatomy of a Large-Scale Hyper-textual Web Search Engine", Computer Networks and ISDN Systems, pp. 1107-1117. 1998.