DOI QR코드

DOI QR Code

Spin Test of 5 kWh Composite Flywheel Rotor

5 kWh 복합재 플라이휠 로터의 회전 시험

  • Han, Hoon-Hee (Department of Mechanical Engineering, Hanyang University) ;
  • Ha, Sung-Kyu (Department of Mechanical Engineering, Hanyang University) ;
  • Kim, Jae-Hyuk (Department of Mechanical Engineering, Hanyang University)
  • 한훈희 (한양대학교 기계공학과) ;
  • 하성규 (한양대학교 기계공학과) ;
  • 김재혁 (한양대학교 기계공학과)
  • Received : 2010.07.29
  • Accepted : 2010.09.08
  • Published : 2010.09.30

Abstract

A 5 kWh composite flywheel rotor was designed and manufactured, and its spin test was performed to monitor strain distribution and burst speed. Strain distribution in radial and circumferential directions of the rotor were measured using a wireless telemetry system based on bluetooth technology for real-time strain measurement. The strains was compared with pre-calculated design values to verify the initial rotor design. We noticed the rotor failed at 19,499 rpm in the spin test, 11 % lower than the predicted burst speed of 22,000 rpm. Failure occurred at the hub which connects the shaft and the composite rotor. The performance of the composite rotor was confirmed in a general sense, and the danger of unexpected failure of composite rotor during high-speed spinning was also demonstrated in this paper. Special attention should be paid to not only composite rotor but also hub when designing a flywheel energy storage system. The telemetry system needs to be further developed, especially enduring the high centrifugal forces, and can be used in a real time monitoring system for the flywheel energy storage system.

본 논문은 에서는 5 kWh 복합재 플라이휠 로터를 설계/제작 하고, 회전 시 복합재 로터에 발생되는 변형률 분포와 로터의 파손 속도를 측정하기 위해 회전 시험을 수행하였다. 회전 시험 시 블루투스 방식의 무선 통신시스템을 이용하여 복합재 로터의 반경방향과 원주방향의 변형률을 실시간으로 측정하였다. 측정된 로터 변형률과 미리 예측된 로터 변형률을 비교하여 초기 로터 설계를 검증하였다. 복합재 로터는 파손속도인 22,000 rpm보다 11 %낮은 19,499 rpm에서 파손 되었다. 파손은 축과 복합재 로터를 연결하는 허브에서 발생하였다. 본 논문은 일반적인 관점에서 로터의 성능을 검증하였고, 고속 회전하는 복합재 로터의 예상치 않은 파손 위험을 입증하였다. 플라이휠 에너지 저장 시스템 설계 시 복합재 로터 뿐 아니라 허브 설계에도 특별한 주의가 요구된다. 플라이휠 에너지 저장 시스템을 실시간으로 관찰하기 위해서, 특히 높은 원심력을 받는 동안에도 작동 될 수 있는 무선 통신 시스템 개발이 앞으로 선행 되어야 한다.

Keywords

References

  1. Genta, G., "Kinetic Energy Storage", Butterworths & Co., Ltd., London, 1945.
  2. Thomas J. Pieronek, D. Kent Decker, Vitor A. Spector., "Spacecraft Flywheel Systems - Benefit and Issues, National Aerospace and Electronics Conference, Proceedings of the IEEE, Dayton, USA, pp. 589-593.
  3. Nakai, H., Matsuda, A., Suzuki, M., "Development and Testing of the Suspension System for a Flywheel Battery", Control Engineering Practice, Vol. 9, pp. 1039-1046, 2001. https://doi.org/10.1016/S0967-0661(01)00076-4
  4. Haichang, L., Jihai J., "Flywheel Energy Storage-An Upswing Technology for Energy Sustainability," Energyand Buildings, Vol. 39, pp. 599-604, 2006.
  5. Anthony J. Colozza., "High Energy Flywheel Containment Evaluation", NASA/CR-2000-210508, 2000.
  6. Ahsley, S., "Designing Safer Flywheels", Mechanical Engineering, pp. 88-91, 1996.
  7. Gabrys, C.W., and Bakis, C.E., "Design and Testing of Composite Flywheel Rotors", Composite Materials: Testing and Design, Vol. 13, pp. 3-22, 1998.
  8. Yasuo, K., Hiroshi, H., Hiroyuki, K., Takahashi, S., Hisaichi, O., Tomoaki, M., "Spin Burst Test of Carbon-Carbon Composite Disk", Journal of Composite Materials, Vol. 32, No. 11, pp. 1017-1035, 1998.
  9. Widmer, J., von Burg, P., "Failure of Tangentially Wound Composite Energy Storage Flywheel (Safety Aspects of Rotor Bursts)", International Conference Composite Materials and Energy, ENERCOMP95, Montreal, Canada, 1995.
  10. Zaitsev, I.M., Portnov, G.G., "Spin-tests of Composite Flywheels", Mechanics of composite materials, Vol. 33, No. 4, pp. 356-370, 1997. https://doi.org/10.1007/BF02256287
  11. Herbst, J.D., Manifold, S.M., Murphy, B.T., Price, J.H., "Design, Fabrication, and Testing 10MJ Composite Flywheel Energy Storage Rotors", Aerospace Power Systems Conference, pp. 235-244, 1998.
  12. Takahashi, K., Kitade, S., "Development of High Speed Composite Flywheel Rotors for Energy Storage Systems", Advanced Composite Materials, Vol. 11, No. 1, pp. 41-50, 2002.
  13. Ha, S.K., Kim, M.H., Han, S.C., Sung, T.H., "Design and Spin Test of a Hybrid Composite Flywheel Rotor with Split Type Hub", Journal of Composite Materials, Vol. 27, pp. 953-965, 2006.
  14. Ha, S.K. and Kim, H.T., "Effects of Rotor Sizes and Epoxy System on the Process-Induced Residual Strains with Multi-ring Composite Rotors", Journal of Composite Materials, Vol. 38, No. 10, pp. 871-885, 2004. https://doi.org/10.1177/0021998304040554