DOI QR코드

DOI QR Code

Identification of Thermal Flow Boundary Conditions for Three-way Catalytic Converter Using Optimization Techniques

최적화 기법을 이용한 삼원촉매변환기의 열유동 경계조건의 동정

  • Baek, Seok-Heum (Department of Mechanical Engineering, Dong-A University) ;
  • Choi, Hyun-Jin (Graduate School of Industry & Science, Kangwon National University) ;
  • Kim, Kwang-Hong (APR 1400 NRC-DC Project Team, KEPCO Research Institute) ;
  • Cho, Seok-Swoo (Department of Vehicle Engineering, Kangwon National University)
  • 백석흠 (동아대학교 기계공학과) ;
  • 최현진 (강원대학교 산업과학대학원) ;
  • 김광홍 (한국전력연구원) ;
  • 조석수 (강원대학교 자동차공학과)
  • Received : 2010.05.26
  • Accepted : 2010.09.08
  • Published : 2010.09.30

Abstract

Three-way catalyst durability in the Korea requires 5 years/80,000km in 1988 but require 10 years/120,000km after 2002. Domestic three-way catalyst satisfies exhaust gas conversion efficiency or pressure drop etc. but don't satisfy thermal durability. Three-way catalyst maintains high temperature in interior domain but maintain low temperature on outside surface. This study evaluated thermal durability of three-way catalyst by thermal flow and structure analysis and the procedure is as followings. Thermal flow parameters ranges were determined by vehicle test and basic thermal flow analysis. Response surface for rear catalyst temperature was constructed using the design of experiment (DOE) for thermal flow parameters. Thermal flow parameters for rear catalyst temperature in vehicles examination were predicted by desirability function. Temperature distribution of three-way catalyst was estimated by thermal flow analysis for predicted thermal flow parameters.

한국에서 삼원촉매 내구성은 1988년에 5년/80,000 km 이지만 2002년 이후로 10년/120,000 km이 요구된다. 국내의 삼원촉매는 배출가스 정화효율이나 압력강하 등이 만족하지만 열적 내구성은 만족시키지 못하고 있다. 삼원촉매는 내부에서 높은 온도를 유지하지만 외부 표면에서는 낮은 온도를 유지한다. 본 연구는 열유동과 구조해석 및 다음과 같은 과정에 의해서 열적 내구성을 평가하였다. 열유동 매개변수 범위는 차량시험과 열유동 해석에 의해 결정하였다. 후면 촉매 온도에 대한 반응 표면은 열유동 매개변수에 대한 실험계획법을 이용해 구성되었다. 차량시험에서 후면 촉매 온도에 대한 열유동 매개변수는 만족도 함수에 의해 예측하였다. 삼원촉매의 온도분포는 예측된 열유동 매개변수에 대한 열유동 해석에 의해 평가하였다.

Keywords

References

  1. H. T. Choi, J. K. Mok, E. H. Lee, J. . Yoo, and J. W. Lee, "An Experimental Study on the Fluid Flow in Monolithic Catalyst Supports," Energy Engg. J(in Korean), Vol. 4, No. 2, pp. 288-296, 1995.
  2. S. J. Jeong, and W. S. Kim, "A Study of Light-off Performance of Catalytic Converter with the Effect of Flow Characteristics," Trans. of the KSAE, Vol. 7, No. 5, pp. 107-120, 1999.
  3. T. Shamim, H. Shen, S. Sengupta, S. Son, and A. A. Adamczyk, "A Comprehensive Model to Predict Three-Way Catalytic Converter Performance," ASME J. Eng. Gas Turbines Power, Vol. 124, No. 2, pp.421-428, 2002. https://doi.org/10.1115/1.1424295
  4. J. G. Kim, S. J. Yoo, and S. S. Kim, "Evaluation of ZSM-5 Supported Metal Catalyst for NOx Removal," J. Acad. Ind. Technol., Vol. 10, No. 8, pp.2015-2020, 2009.
  5. H. T. Jang, and W. S. Cha, "Development of Composite Catalyst for Hazardrous Gas Treatment using the Heat of Aviary Heating Equipment," J. Acad. Ind. Technol., Vol. 10, No. 10, pp. 2779-2785, 2009.
  6. R. J. Clarkson, S. F. Benjamin, T. S. Jasper, and N. S. Girls, "An Integrated Computational Model for the Optimisation of Monolith Catalytic Converters," SAE Paper No. 931071, 1993.
  7. S. T. Gulati, "Design Considerations for Advanced Ceramic Catalyst Supports," SAE Paper No. 2001-01-0493, 2001.
  8. S. H. Baek, S. Y. Kim, S. S. Seung, H. Yang, W. S. Joo, and S. S. Cho, "Experimental Estimation of Thermal Durability in Ceramic Catalyst Supports for Passenger Car," Trans. of the KSME(A), Vol. 31,No. 12, pp. 1157-1164, 2007. https://doi.org/10.3795/KSME-A.2007.31.12.1157
  9. S. H. Baek, J. S. Park, M. G. Kim, and S. S. Cho, "A Study on Thermal Shock of Ceramic Monolithic Substrate," Trans. of the KSME(A), Vol. 34, No. 2, pp. 129-138, 2010. https://doi.org/10.3795/KSME-A.2010.34.2.129
  10. Y. Hayasaka, S. Sakurai, and I. Sakehara, "A Method to Estimate Service Boundary Conditions for Hot-Gas-Path Components of a Gas Turbine by Using a Design of Experiments," Trans. of the JSME(A),Vol. 68, No. 671, pp. 145-150, 2002.
  11. D. W. Lee, S. J. Lee, S. S. Cho, and W. S. Joo, "Failure of Rocker Arm Shaft for 4-cylinder SOHC Engine," Engineering Failure Analysis, Vol. 12, pp.405-412, 2005. https://doi.org/10.1016/j.engfailanal.2004.03.014
  12. D. C. Montgomery, Design and Analysis of Experiments, Fifth Edition, John & Sons, 2001.
  13. S. H. Baek, K. M. Kim, S. S. Cho, D. Y. Jang, and W. S. Joo, "A Sequential Optimization Algorithm Using Metamodel-Based Multilevel Analysis," Trans. of the KSME(A), Vol. 33, No. 9, pp. 892-902, 2009. https://doi.org/10.3795/KSME-A.2009.33.9.892
  14. E. D. Castillo, D. C. Montgomery, and D. R. McCarville, "Modified Desirability Functions for Multiple Response Optimization," Journal of Quality Technology, Vol. 28, pp. 337-345, 1996.
  15. S. H. Baek, S. S. Cho, S. G. Shin, and W. S. Joo, "Size Effect on the Modulus of Rupture in Automotive Ceramic Monolithic Substrate using Optimization and Response Surface Method," Trans.of the KSME(A), Vol. 30, No. 11, pp. 1392-1400, 2006. https://doi.org/10.3795/KSME-A.2006.30.11.1392
  16. E. D. Castillo, D. C. Montgomery, and D. R. McCarville, "Modified Desirability Functions for Multiple Response Optimization," Journal of Quality Technology, Vol. 28, pp. 337-345, 1996.
  17. G. Pontikakis, and A. Stamatelos, "Three-Dimensional Catalytic Regeneration Modeling of SiC Diesel Particulate Filters," ASME J. Eng. Gas Turbines Power, Vol. 128, No. 2, pp. 421-433, 2006. https://doi.org/10.1115/1.2130732
  18. ANSYS CFX, Release 11.0 User Manual, 2008, ANSYS Inc.
  19. ANSYS ICEM CFD, ANSYS ICEM CFD/AI* Environment 10.0 User Manual, 2007, ANSYS Inc.
  20. T. Ozyener, K. Satyamurthy, C. E. Knight, P. S. Jitendra, D. P. H. Hasselman, and G. Ziegler, "Effect of $\Delta$T-and Spatially Varying Heat Transfer Coefficient on Thermal Stress Resistance of Brittle Ceramics Measured by the Quenching Method," Journal of the American Ceramic Society, Vol. 66,No. 1, pp. 53-58, 1982.
  21. MINITAB, MINITAB Release 14 User's Guide #2: Data Analysis and Quality Tools, 2000, Minitab Inc.

Cited by

  1. Optimization Techniques for the Inverse Analysis of Service Boundary Conditions in a Porous Catalyst Substrate with Fluid-Structure Interaction Problems vol.35, pp.10, 2011, https://doi.org/10.3795/KSME-A.2011.35.10.1161