Abstract
In order to detect the skin color area from input images, many prior researches have divided an image into the pixels having a skin color and the other pixels. In a still image or videos, it is very difficult to exactly extract the skin pixels because lighting condition and makeup generate a various variations of skin color. In this thesis, we propose a method that improves its performance using hierarchical merging of 3D skin color model and context informations for the images having various difficulties. We first make 3D color histogram distributions using skin color pixels from many YCbCr color images and then divide the color space into 3 layers including skin color region(Skin), non-skin color region(Non-skin), skin color candidate region (Skinness). When we segment the skin color region from an image, skin color pixel and non-skin color pixels are determined to skin region and non-skin region respectively. If a pixel is belong to Skinness color region, the pixels are divided into skin region or non-skin region according to the context information of its neighbors. Our proposed method can help to efficiently segment the skin color regions from images having many distorted skin colors and similar skin colors.
피부색 영역의 검출을 위한 기존 연구들은 영상의 각 픽셀을 피부에 속하는 픽셀(피부픽셀)과 속하지 않는 픽셀(비피부픽셀)로 나누게 된다. 이때 정확한 피부색 영역을 검출하는 작업은 영상의 조명효과 및 화장에 의한 피부색 변형 등으로 매우 어려운 작업이다. 본 논문에서는 피부 영역 검출을 어렵게 하는 여러 가지 요인을 포함한 영상들로부터 효율적으로 피부영역을 검출하기 위해 계층화된 피부 모델과 컨텍스트 정보를 통합하여 피부 영역 검출의 성능을 향상시키는 방법을 제안한다. 먼저, 획득된 영상들로부터 뽑아낸 피부색 색깔 값들의 확률분포를 YCbCr칼라 공간에 만들고, 그 확률 값에 따라 피부(Skin), 피부후보(Skinness), 비피부(Non-skin)의 3계층으로 분류한 3차원 피부색 모델을 만든다. 계층화된 피부색 모델을 이용하여 각 픽셀의 피부색 여부를 결정하고, 피부후보(Skinness)색에 해당하는 경우에는 이웃 화소의 정보를 고려하여 피부색 또는 비 피부색으로 정하게 된다. 제안 방법의 사용으로 피부색이 왜곡 되었거나 피부색과 유사한 객체가 포함된 다양한 영상들에서도 효율적으로 피부 영역을 분할할 수 있었다.