Mutual Activities of IEX-1 and MCL-1 on the Apoptosis of Ovarian Cancer Cells

난소암 세포에서 IEX-1과 MCL-1 단백질들의 세포 사멸 기능에 관한 상호작용

  • Yoon, Seong-Min (Dept. of Biomedical Science, College of Life Science, CHA University) ;
  • Na, Soon-Young (Dept. of Biomedical Science, College of Life Science, CHA University) ;
  • Kim, Hong-Man (Dept. of Life Science, College of Natural Science, Chung-Ang University) ;
  • Lee, Kang-Seok (Dept. of Life Science, College of Natural Science, Chung-Ang University) ;
  • Bae, Jee-Hyeon (Dept. of Biomedical Science, College of Life Science, CHA University)
  • 윤성민 (CHA 의과학대학교 생명과학대학 의생명과학과) ;
  • 나순영 (CHA 의과학대학교 생명과학대학 의생명과학과) ;
  • 김홍만 (중앙대학교 자연과학대학 생명과학과) ;
  • 이강석 (중앙대학교 자연과학대학 생명과학과) ;
  • 배지현 (CHA 의과학대학교 생명과학대학 의생명과학과)
  • Received : 2010.03.08
  • Accepted : 2010.04.28
  • Published : 2010.06.30

Abstract

Apoptosis is a crucial mechanism for the proper regulation of homeostasis. BCL-2 family proteins are key molecules which control cellular survival and apoptosis. MCL-1 (myeloid cell leukemia-1) is a pro-survival member of BCL-2 family that promotes the survival of cells, and is highly expressed in diverse cancers including ovarian cancer, leukemia, and cervical cancer. Previously we identified IEX-1 (immediate early response gene X-1) as a binding partner of MCL-1. In the present study, we demonstrated that overexpression of IEX-1 induced apoptosis of ovarian cancer cells. Moreover, IEX-1 significantly attenuated the pro-survival function of MCL-1 in these cells. Also, IEX-1-induced cell death activity was able to be modulated by changes in the expression level of MCL-1. Thus, these results suggest that both IEX-1 and MCL-1 modulate each other's function controlling cellular survival and death and the inhibitory activity of IEX-1 toward MCL-1 may be applied for the development of chemotherapeutics.

세포 사멸(apoptosis)은 세포의 항상성을 적절하게 유지하기 위한 중요한 메커니즘이다. BCL-2 family 단백질들은 세포의 생존과 세포 사멸을 조절하는 중요한 단백질이다. MCL-1 단백질은 세포의 생존을 촉진시키는 기능을 하는 pro-survival BCL-2 family member이며, 난소암, 혈액암, 자궁 경부암과 같은 다양한 암 조직에서 높게 발현하고 있다. 이전 연구에서, 본 연구진에 의해서 IEX-1 단백질은 MCL-1의 결합 단백질로 밝혀졌다. 본 연구에서는, 난소암 세포에서 IEX-1의 과다 발현에 의한 세포 사멸이 유도되는 것을 밝혔다. 더욱이, IEX-1 단백질은 MCL-1 단백질의 세포 생존을 위한 기능을 감소시켰으며, IEX-1에 의한 세포 사멸 효과는 MCL-1의 발현 정도의 변화에 의해서 그 기능이 영향을 받고 있었다. 그러므로 이러한 결과들은 IEX-1과 MCL-1은 세포 사멸과 생존을 조절하는 서로의 기능에 영향을 미치고, MCL-1의 기능에 대한 IEX-1의 세포 생존율 억제 효과는 항암치료 방법의 개발에 응용될 수 있는 가능성을 제시해 준다.

Keywords

References

  1. Arlt A, Kruse ML, Breitenbroich M, Gehrz A, Koc B, Minkenberg J, Folsch UR, Schafer H (2003) The early response gene IEX-1 attenuates NF-kappaB activation in 293 cells, a possible counter-regulatory process leading to enhanced cell death. Oncogene. 22:3343-3351. https://doi.org/10.1038/sj.onc.1206524
  2. Bae J, Donigian JR, Hsueh AJ (2003) Tankyrase 1 interacts with Mcl-1 proteins and inhibits their regulation of apoptosis. J Biol Chem 278:5195-5204. https://doi.org/10.1074/jbc.M201988200
  3. Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, Colman PM, Day CL, Adams JM, Huang DC (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17:393-403. https://doi.org/10.1016/j.molcel.2004.12.030
  4. Garcia J, Ye Y, Arranz V, Letourneux C, Pezeron G, Porteu F (2002) IEX-1: a new ERK substrate involved in both ERK survival activity and ERK activation. EMBO J 21:5151-5163. https://doi.org/10.1093/emboj/cdf488
  5. Hand R, Fremegen A, Chmiel SJ, Recant W, Berk R, Sylvester J, Sener S (1993) Staging procedures, clinical management and survival outcome for ovarian carcinoma. J Am Med Assoc 269:1119-1122. https://doi.org/10.1001/jama.269.9.1119
  6. Jamil S, Sobouti R, Hojabrpour, Raj M, Kast J, Duronio V (2005) A proteolytic fragment of Mcl-1 exhibits nuclear localization and regulates cell growth by interaction with Cdk1. Biochem J 387:659-667. https://doi.org/10.1042/BJ20041596
  7. Kazushi S, Osamu K, Yuko S, Shoji, Keiji M, Nobutaka N, Koso O (2002) Increased MCL-1 expression is associated with poor prognosis in ovarian carcinomas. Jpn J Cancer Res 93:542-550. https://doi.org/10.1111/j.1349-7006.2002.tb01289.x
  8. Kim H, Rafiuddin-Shah M, Tu HC, Jeffers JR, Zambetti GP, Hsieh JJ, Cheng EH (2006) Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol 8:1348-1358. https://doi.org/10.1038/ncb1499
  9. Kondratyev AD, Chung KN, Jung MO (1996) Identification and characterization of a radiation-inducible glycosylated human early-response gene. Cancer Res 56: 1498-1502.
  10. Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW (1993) MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci USA 90:3516-3520. https://doi.org/10.1073/pnas.90.8.3516
  11. Kumar R, Kobayashi T, Warner GM, Wu Y, Salisbury JL, Lingle W, Pittelkow MR (1998) A novel immediate early response gene, IEX-1, is induced by ultraviolet radiation in human keratinocytes. Biochem Biophys Res Commun 253:336-341. https://doi.org/10.1006/bbrc.1998.9692
  12. Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR, Newmeyer DD (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17:525-535. https://doi.org/10.1016/j.molcel.2005.02.003
  13. Nijhawan D, Fang M, Traer E, Zhong Q, Gao W, Du F, Wang X (2003) Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev 17:1475-1486. https://doi.org/10.1101/gad.1093903
  14. Opferman JT, Iwasaki H, Ong CC, Suh H, Mizuno S, Akashi K, Korsmeyer SJ (2005) Obligate role of antiapoptotic MCL-1 in the survival of hematopoietic stem cells. Science 307:1101-1104. https://doi.org/10.1126/science.1106114
  15. Reers M, Smiley ST, Mottola-Hartshorn C, Chen A, Lin M, Chen LB (1995) Mitochondrial membrane potential monitored by JC-1 dye. Methods Enzymol 260:406-417. https://doi.org/10.1016/0076-6879(95)60154-6
  16. Sakai W, Swisher EM, Karlan BY, Agarwal MK, Higgins J, Friedman C, Villegas E, Jacquemont C, Farrugia DJ, Couch FJ, Urban N, Taniguchi T (2008) Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 451:1116-1120. https://doi.org/10.1038/nature06633
  17. Schilling D, Pittelkow MR, Kumar R (2001) IEX-1, an immediate early gene, increases the rate of apoptosis in keratinocytes. Oncogene 20:7992-7997. https://doi.org/10.1038/sj.onc.1204965
  18. Spriggs D (2003) Optimal sequencing in the treatment of recurrent ovarian cancer. Gynecol Oncol 90:S39-43. https://doi.org/10.1016/S0090-8258(03)00471-2
  19. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456-1462. https://doi.org/10.1126/science.7878464
  20. Warr MR, Shore GC (2008) Unique biology of Mcl-1: therapeutic opportunities in cancer. Curr Mol Med 8: 138-147. https://doi.org/10.2174/156652408783769580
  21. Wu MX, Ao Z, Prasad KV, Wu R, Schlossman SF (1998) IEX-1L, an apoptosis inhibitor involved in NF-kappaBmediated cell survival. Science 281:998-1001. https://doi.org/10.1126/science.281.5379.998
  22. Yoon S, Ha HJ, Kim YH, Won M, Park M, Ko JJ, Lee K, Bae J (2009) IEX-1-induced cell death requires BIM and is modulated by MCL-1. Biochem Biophys Res Commun 382:400-404. https://doi.org/10.1016/j.bbrc.2009.03.037
  23. Zhang D, Li F, Weidner D, Mnjoyan ZH, Fujise K (2002) Physical and functional interaction between myeloid cell leukemia 1 protein (MCL1) and fortilin. The potential role of MCL1 as a fortilin chaperone. J Biol Chem 277:37430-37438. https://doi.org/10.1074/jbc.M207413200
  24. Zhang Y, Finegold MJ, Porteu F, Kanteti P, Wu MX (2003) Development of T-cell lymphomas in Emu-IEX-1 mice. Oncogene 22:6845-6851. https://doi.org/10.1038/sj.onc.1206707