충전제 함량과 형태에 따른 PP복합체의 모듈러스 변화에 대한 실증적 연구

Empirical Study for the Effects of Various Filler-Shapes on the Modulus of PP Composites

  • Kim, Jae-Min (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Jeoung, Sun-Kyoung (Korea Automotive Technology Institute) ;
  • Shim, Je-Hyeon (LG Chem., Ltd.) ;
  • Hwang, Hyo-Yeon (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Lee, Kee-Yoon (Department of Polymer Science and Engineering, Chungnam National University)
  • 투고 : 2010.02.05
  • 심사 : 2010.02.23
  • 발행 : 2010.07.25

초록

복합체의 기계적 물성 중에서 특히 충전제 형태와 함량에 따라 폴리프로필렌 복합체의 모듈러스 변화에 미치 는 영향에 관해 연구하였다. Eshelby의 중첩원리를 바탕으로 Lee와 Paul에 의해 제안된 두 개의 종횡비, ${\rho}_\alpha=a_1/a_3$${\rho}_\beta=a_1/a_2$를 가지고 분석한 3차원 타원체의 이론적 예측을 실험값과 비교 분석하였다. 충전제의 형태를 SEM을 이용해 관찰하였고, 종횡비는 통계적 방법으로 계산하였다. 구의 형태를 띠는 황산바륨의 횡단방향과 종단방향의 모 듈러스가 이론적 예측과 유사한 결과를 보였다. 유리섬유의 경우 충전제의 함량이 증가함에 따라 $x_1$방향의 모듈러스 가 증가하였지만, $x_3$ 방향의 증가는 상대적으로 작았다. 또한, 2개의 종횡비가 기계적 물성에 미치는 영향에 대해 운모를 가지고 연구하였다.

The mechanical properties of polypropylene (PP) composites, especially the effects of the filler shapes on the modulus were studied. The experimental results were investigated and compared with the theoretical approaches proposed by Lee and Paul and based on Eshelby's principle, which three dimensional ellipsoids were filled as filler and analyzed in terms of aspect ratio, ${\rho}_\alpha=a_1/a_3$ and ${\rho}_\beta=a_1/a_2$. The shapes of fillers were observed by SEM and aspect ratios were statistically calculated. Young's moduli in the longitudinal and transverse directions for barium sulfate whose shape was sphere ($\rho_\alpha=\rho_\beta=1$) had the same values, as predicted values. The modulus in the $x_1$ direction for a glass fibers increased as the filler content increased, while the modulus in the $x_3$ direction was increased relatively small. Furthermore, mica was also used to investigate the effects of the primary and secondary aspect ratios on the mechanical properties.

키워드

참고문헌

  1. J. D. Eshelby, Proc. Roy. Soc. Lond, A241(1226) , 376 (1957) .
  2. R. HiIl, J. Mech. Phys. Solids, 12, 199 (1964). https://doi.org/10.1016/0022-5096(64)90019-5
  3. T. Mori and K. Tanaka. Acta Metall., 21, 571 (1963).
  4. J. C. Halpin, Primer on Composite Materials Analysis, Technomic Pub. Co. Inc., Lancaster, 1992.
  5. G. P. Tandon and G. J. Weng, Polym. Compos., 5, 327 (1984). https://doi.org/10.1002/pc.750050413
  6. T. Mura, Micromechanics of Defects in Solids. The Hague Martinus Nijhoff, 1987.
  7. C. L. Tucker and E. Liang, Compos. Sci. Technol., 59, 655 (1999). https://doi.org/10.1016/S0266-3538(98)00120-1
  8. P. J. Yoon, T. D. Fornes, and D. R. Paul, Polymer, 43, 6727 (2002). https://doi.org/10.1016/S0032-3861(02)00638-9
  9. K. Y. Lee and D. R. Paul, Polymer, 46, 9064 (2005). https://doi.org/10.1016/j.polymer.2005.06.113
  10. H. S. Lee, P. D. Fasulo, W. R. Rodgers, and D. R. Paul, Polymer, 46, 11673 (2005). https://doi.org/10.1016/j.polymer.2005.09.068
  11. K. Y. Lee, K. H. Kim, S. K. Jeoung, S. I. Ju, J. H. Shim, N. H. Kim, S. G. Lee, S. M. Lee, J. K. Lee, and D. R. Paul, Polymer, 48, 4174 (2007). https://doi.org/10.1016/j.polymer.2007.05.036
  12. K. Y. Lee, S. R. Hong. S. K. Jeoung, N. H. Kim, S. G. Lee, and D. R. Paul, Polymer, 49, 2116 (2008).
  13. D. V. Howe and J. E. Mark, Polymer data handbook, Oxford University Press. New York, 1998.
  14. S. M. Lee, International Encyclopedia of Composites, Wiley-VCH Verlag Gmbh & Co. KgaA, 1991.
  15. J. C. HiIl, J. W. Foulk III, P. A. Klein, and E. P. Chen, A Three-dirnensional Validation of Crack Curvature in Muscovite Mica, IACMAG 10, Tuscon, 2001.
  16. G. Mavko, T. Muukerji, and J. Dvorkin, The Rock Physics Handbook, Cambridge University Press, Cambridge, 1998.
  17. J. M. Margolis, Advanced Themoset Composites Industrial and Commercial Applications, Van Nostrand Reinhold. Co., NY, 1986