Preparation and Properties of PAA/PHA/Organoclay Nanocomposite

PAA/PHA/Organoclay 나노복합재료의 제조 및 특성

  • Yoon, Doo-Soo (Department of Bioenvironmental & Chemical Engineering, Chosun University College of Science & Technology) ;
  • Choi, Jae-Kon (Department of Polymer Science & Engineering, Chosun University) ;
  • Jo, Byung-Wook (Department of Chemical Engineering, Chosun University)
  • 윤두수 (조선이공대학 생명환경화공과) ;
  • 최재곤 (조선대학교 공과대학 응용화학소재공학과) ;
  • 조병욱 (조선대학교 공과대학 생명화학공학과)
  • Received : 2010.01.20
  • Accepted : 2010.02.27
  • Published : 2010.07.25

Abstract

Nanocomposite films were prepared by blending poly(amic acid)(PAA), poly(o-hydroxyamide)( PHA) and organically modified montmorillonite (OMMT) that has a layered structure. XRD, SEM and TEM were used to study the morphology of PAA/PHA nanocomposites, and DMA, TGA, UTM, LOI and PCFC techniques were used to characterize the mechanical and thermal properties, and flame retardancy of the nanocomposites. TEM images revealed that OMMT layers were well dispersed in the PAA/PHA matrix and showed exfoliation and intercalation behavior. The addition of 3 wt% OMMT to the PAA/PHA blend increased the initial modulus of PAA/ PHA blend to 3.68 GPa that was ca. 48% higher than that of the control PAA/PHA blend. Above 4 wt%, however, both the initial modulus and the tensile strength were found to decrease, which might be due to the aggregation of OMMT in PAA/PHA matrix. When the OMMT content was below 3 wt%, the thermal stability and flame retardancy of the PAA/PHA nanocomposites increased with increasing OMMT content.

Poly(amic acid)(PAA), poly(o-hydroxyamide)(PHA) 및 층상형인 유기화 점토를 블렌딩하여 나노복합재료 필름을 제조하였다. PAA/PHA 나노복합재료들의 모폴로지를 연구하기 위해 XRD, SEM 그리고 TEM을 사용하였으 며 DMA, TGA, UTM, LOI 및 PCFC를 이용하여 나노복합재료들의 기계적, 열적 성질 및 난연성을 조사하였다. 유기화 점토는 PAA/PHA 매트릭스에 잘 분산되어 박리 및 삽입형 모폴로지를 보였다. PAA/PHA 블렌드에 3 wt% 유기 화 점토를 첨가함으로써 PAA/PHA 블렌드의 초기 모듈러스가 약 48% 향상된 3.68 GPa까지 증가하였다. 유기화 점토 함량이 4 wt% 이상에서는 초기 모듈러스와 인장강도가 모두 감소하였는데 이는 PAA/PHA 매트릭스에 대한 유기화 점토의 뭉침 현상 때문인 것으로 유추된다. 유기화 점토의 함량이 3 wt% 이하일 때 PAA/PHA 나노복합재료들의 열 안정성 및 난연 특성들은 유기화 점토의 함량이 증가함에 따라 증가하였다.

Keywords

References

  1. P. C. LeBaron, Z. Wang, and T. J. Pinnavaia, Appl. Clay Sci., 15, 11 (1999). https://doi.org/10.1016/S0169-1317(99)00017-4
  2. M. Alexander and P. Dubois, Mater. Sci. Eng. Res., 28, 1 (2000). https://doi.org/10.1016/S0927-796X(00)00012-7
  3. E. P. Giannelis, Adv. Mater., 8, 29 (1996). https://doi.org/10.1002/adma.19960080104
  4. R. Krishnamoorti, R. A. Vaia, and E. P. Giannelis, Chem. Mater., 8, 1728 (1996). https://doi.org/10.1021/cm960127g
  5. T. D. Fornes, P. J. Yoon, D. L. Hunter, H. Keskkula, and D. R. Paul, Polymer, 43, 5915 (2002). https://doi.org/10.1016/S0032-3861(02)00400-7
  6. Y. Imai, K. Itoya, and M. A. Kakimoto, Macromol. Chem. Phys., 201, 2251 (2000). https://doi.org/10.1002/1521-3935(20001101)201:17<2251::AID-MACP2251>3.0.CO;2-W
  7. N. Ogata, Makromol. Chem. Macromol. Symp., 53, 191 (1992).
  8. D. S. Yoon, J. K. Choi, and B. W. Jo, Polymer(Korea), 30, 478 (2006).
  9. D. S. Yoon, J. K. Choi, and B. W. Jo, Polymer(Korea), 32, 77 (2008).
  10. S. H. Hsiao and M. H. He, J. Polym. Sci. Part A: Polym. Chem., 39, 4014 (2001). https://doi.org/10.1002/pola.10039
  11. S. L. C. Hsu and W. C. Chen, Polymer, 43, 6743 (2002). https://doi.org/10.1016/S0032-3861(02)00635-3
  12. B. N. Jang and J. H. Choi, Polym. Sci. Tech., 20, 8 (2009).
  13. H. L. Tyan, Y. C. Liu, and K. H. Wei, Polymer, 40, 4877 (1999). https://doi.org/10.1016/S0032-3861(98)00716-2
  14. D. S. Yoon, J. K. Choi, and B. W. Jo, Polymer(Korea), 29, 493 (2005).
  15. Y. U. An, J. H. Chang, Y. H. Park, and J. M. Park, Polymer(Korea), 26, 381 (2002).
  16. R. N. Walters and R. E. Lyon, J. Appl. Polym. Sci., 87, 548 (2003). https://doi.org/10.1002/app.11466
  17. R. N. Walters and R. E. Lyon, J. Anal. Appl. Pyrolysis. 71, 27 (2004). https://doi.org/10.1016/S0165-2370(03)00096-2
  18. K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito, J. Polym. Sci Part A: Polym. Chem., 31, 2493 (1993). https://doi.org/10.1002/pola.1993.080311009
  19. Z. K. Zhu, Y. Yang, J. Yin, X. Y. Wang, Y. C. Ke, and Z. N. Qi, J. Appl. Polym. Sci., 73, 2063 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990912)73:11<2063::AID-APP1>3.0.CO;2-Q
  20. M. H. Jung and J. H. Jang, Polymer(Korea), 31, 518 (2007).
  21. J. H. Chang and K. M. Park, Eur. Polym. J., 36, 2185 (2000). https://doi.org/10.1016/S0014-3057(99)00280-3
  22. K. S. Yang, Dan D. Edie, D. Y. Lim, Y. M. Kim, and Y. O. Choi, Carbon, 41, 2039 (2003). https://doi.org/10.1016/S0008-6223(03)00174-X
  23. W. S. Chow, Z. A. Mohd Ishak, J. Karger-kocsis, A. A. Apostolov, and U. S. Ishiaku, Polymer, 44, 7427 (2003). https://doi.org/10.1016/j.polymer.2003.09.006
  24. G. Galgali, C. Ramesh, and A. Lele, Macromolecules, 34, 852 (2001). https://doi.org/10.1021/ma000565f
  25. R. A. Vaia, K. D. Jandt, E. J. Kramer, and E. P. Giannelis, Chem. Mater., 8, 2628 (1996). https://doi.org/10.1021/cm960102h
  26. X. Li, T. Kang, W. J. Jo, J. K. Lee, and C. S. Ha, Macromol. Rapid Commum., 22, 1306 (2001). https://doi.org/10.1002/1521-3927(20011101)22:16<1306::AID-MARC1306>3.0.CO;2-I
  27. S. Kim, D. S. Yoon, J. K. Choi, and B. W. Jo, Elastomer, 42, 177 (2007).
  28. S. Y. Tsay, B. K. Chen, and C. P. Chen, J. Appl. Polym, Sci., 99, 2966 (2006). https://doi.org/10.1002/app.22999
  29. S. Wang, Y. Hu, Z. Li, Z. Wang, Y. Zhuang, Z. Chen, and W. Fan, Colloid Polym. Sci., 281, 951 (2003). https://doi.org/10.1007/s00396-002-0858-x
  30. S. Wang, Y. Hu, Z. Li, Z. Wang, Y. Zhuang, Z. Chen, and W. Fan, Colloid Polym. Sci., 281, 951 (2003). https://doi.org/10.1007/s00396-002-0858-x
  31. Malcolm P. Stevens, Polymer Chemistry an lntroduction, Oxford University Press, New York Oxford, 1999.
  32. J. H. Chang and R. J. Farris, Polym. Eng. Sci., 40, 320 (2000). https://doi.org/10.1002/pen.11165