Effects of Sediment and Cyanobacterium Microcystis aeruginosa on the Feeding Behavior of Omnivores Gold Fish Carassius auratus

잡식어 붕어의 섭식활동에 퇴적물 및 독성 남조 Microcystis aeruginosa의 영향

  • Kim, Baik-Ho (Department of Environmental Science, Konkuk University) ;
  • Kim, Keun-Hee (Department of Environmental Science, Konkuk University) ;
  • Kim, Yong-Jae (Department of Life Science, Daejin University) ;
  • Hwang, Soon-Jin (Department of Environmental Science, Konkuk University)
  • Received : 2010.03.17
  • Accepted : 2010.05.21
  • Published : 2010.06.30

Abstract

Effects of sediment and toxic cyanobacterium Microcystis aeruginosa on feeding behaviors of an omnivorous fish, gold fish (Carassius auratus) were examined in laboratory and in situ mesocosm. Laboratory feeding experiments were performed in small aquaria (7 L) with cyanobacterial blooms (mainly M. aeruginosa) under the condition of sediments and no-sediments, and toxic (NIES-298) and non-toxic M. aeruginosa (NIES-101). In situ feeding experiments were conducted at the shore of eutrophic lake (Lake Ilgam, Seoul) in the mid-July, 2005. Results showed that fish introduction decreased the concentration of Chlorophyll-a (Chl-a) at higher rate in no sediment-containing aquaria. In contrast, there was a drastic increase of Chl-a in the sedimentcontaining aquaria. Fish effectively removed the M. aeruginosa cells without algal toxin (microcystin). Fish also selectively removed the large size Chl-a (>$50{\mu}m$), although all kinds of nutrients were increased after fish introduction, especially ammonia. Our results indicate that the strategic introduction of domestic omnivores Carassius auratus, to control cyanobacterial bloom in eutrophic lake will negatively play in the water quality improvement via a sediment disturbance and a density-dependent digestion.

잡식성 어류 붕어(Carassius auratus)의 섭식활동에 퇴적물과 독성남조 Microcystis aeruginosa의 영향을 파악하기 위하여 실내 및 현장 mesocosm실험을 실시하고 어류에 의한 식물플랑크톤과 수질변화를 각각 조사하였다. 퇴적물 실험은 실내 수조(7 L)에서 남조발생 저수지(일감호, 서울)의 현장수와 퇴적물을 이용하였고, 독성남조 실험은 독성(NIES-298) 및 비독성(NIES-101) 남조 M. aeruginosa를 이용하였다. 현장 mesocosm실험은 남조 발생이 극심하였던 2005년 7월에 저수지 연안에 총 9개 mesocosm를 설치하고 어류를 밀도별 처리한 다음 식물플랑크톤 밀도와 수질변화를 조사하였다. 모든 실험은 3회씩 반복으로 실시하였다. 실험결과, 퇴적물이 없는 수조에서는 Chl-a의 감소를 보였으나 퇴적물 수조에서는 오히려 Chl-a의 증가를 보였으며, 독성에 상관없이 뚜렷한 M. aeruginosa 제어능을 나타냈다. 현장 mesocosm 실험에서는 비교적 세포크기가 큰 macrophytoplankton (>$50{\mu}m$)를 선호한 반면 나머지 플랑크톤(<$2{\mu}m,\;2{\sim}20{\mu}m,\;20{\sim}50{\mu}m$)은 오히려 성장을 촉진하였다. 영양염은 조류밀도가 높은 조건에서 어류 도입 이후 암모니아의 급격한 증가를 보였다. 따라서 잡식성 어류인 붕어는 남조독성에 상관없이 도입초기 일시적으로 조류제어능을 보이지만 퇴적물 교란 및 영양염 배출로 인하여 현장 조건보다 퇴적물이 적은 정수장이나 생물관리가 가능한 조건에서 제한적으로 적용하는 것이 타당할 것으로 판단되었다.

Keywords

References

  1. 김백호, 최민규, 황수옥, 高村典子. 2000. 부영양호의 enclosure 내에서 어류의 밀도조절이 수질 및 플랑크톤 군집에 미치는 영향. 한국육수학회지 33: 358-365.
  2. 김백호, 최민규, 高村典子. 2001. 어린 백련어의 성장에 대한 동, 식물플랑크톤의 먹이기여도. 한국육수학회지 34: 98-105.
  3. 김호섭, 황순진, 고재만. 2003. 도심의 얕은 인공호인 일감호의 수질변화 특성과 퇴적환경의 평가. 한국육수학회지 36: 161-171.
  4. 서미연, 김백호, 한명수. 2005. 서울 경기지역의 공원연못 및 한 강수계내 조류독소 microcystin-LR의 분포. 한국육수학회지 38: 237-248.
  5. 최기철, 전상린, 김익수, 손영목. 1990. 원색한국담수어도감. 향문사.
  6. APHA. 1995. Standard methods for the examination of water and wastewater. 19th ed. American Public Health Association, Washington, DC.
  7. Bagnaz, D., G. Staaks and C. Steinberg. 1998. Impact of the cyanobacteria toxin, microcystin-LR on behavior of zebrafish Danio rerio. Water Res. 32: 948-952. https://doi.org/10.1016/S0043-1354(97)00207-8
  8. Carbis, C.R., G.T. Rawlin, P. Grant, G.F. Mitchell, J.W. Anderson and I. McGauley. 1997. A study of the feral carp, Cyprrinus carpio L., exposed to Microcystis aeruginosa at Lake Mokoan, Australia and possible implications for fish health. J. Fish Dis. 20: 81-91. https://doi.org/10.1046/j.1365-2761.1997.d01-111.x
  9. Carpenter, S.R., J.F. Kitchell and J.R. Hodgson. 1985. Cascading trophic interactions and lake productivity. Bio-Science 35: 634-639.
  10. Carpenter, S.R., J.F. Kitchell, J.R. Hodgson, P.A. Cochran, J.J. Elser, M.M. Elser, D.M. Lodge, D. Kretchmer, X. He and C.N. Ende. 1987. Regulation of lake primary productivity by food web structure. Ecology 68: 1863-1876. https://doi.org/10.2307/1939878
  11. Datta, S. and B.B. Jana. 1998. Control of bloom in a properties, and biological significance. Water Sci. Technol. 32: 146-159.
  12. DeMelo, R., R. France and D.J. McQueen. 1992. Biomanipulation: Hit or myth? Limnol. Oceanogr. 37: 192-207. https://doi.org/10.4319/lo.1992.37.1.0192
  13. Eugenia T.A., N. Marba, M. Holmer and I. Karakassis. 2008. Fish farming enhances biomass and nutrient loss in Posidonia oceanica (L.) Delile. Est. Coast. Shel. Sci. 81: 390-400.
  14. Findlay, D.L., S.E.M. Kasian, L.L. Hendzel, G.W. Regehr, E.U. Schindler and J.A. Shearer. 1994. Biomanipulation of Lake 221 in the experimental lakes area (ELA): Effects on phytoplankton and nutrients. Can. J. Fish Aquat. Sci. 51: 2794-2807. https://doi.org/10.1139/f94-279
  15. Fukushima, M., N. Takamura, B.H. Kim, M. Nakagawa, L. Sun and Y. Zheng. 2000. The responses of an aquatic ecosystem to the manipulation of the filter-feeding silver carp (Hypophthalmichthys molitrix). Verh. Int. Verein. Limnol. 27: 1033-1039.
  16. Goldschmidt, T., F. Witte and J. Wanink. 1993. Cascading effects of the introduced Nile perch on the detritivorous /phytoplanktivorous species in the sublittoral areas of Lake Victoria. Conserv. Biol. 7: 686-700. https://doi.org/10.1046/j.1523-1739.1993.07030686.x
  17. Kamjuke, N., K. Schmidt, S. Pflugmacher and T. Mehner. 2002. Consumption of cyanobacteria by roach (Rutillus rutillus): useful or harmful to fish? Freshwater Biol. 47: 243-250. https://doi.org/10.1046/j.1365-2427.2002.00800.x
  18. Kim, B.H., M.K. Choi and N. Takamura. 2000. Feeding behavoir of one-year-old silver carp, Hypophthalmichthy molitrix, on dominant phytoplankton during a summer in the enclosure of shallow-hypertrophic lake. Kor. J. Limnol. 33: 319-327.
  19. Laws, E.A. and R.S.J. Weisburd. 1990. Use of silver carp to control algal biomass in aquaculture ponds. Progr. Fish-Cul. 52: 1-8. https://doi.org/10.1577/1548-8640(1990)052<0001:UOSCTC>2.3.CO;2
  20. Lieberman, D.M. 1996. Use of silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichtchys nobilis) for algae control in a small pond: changes in water quality. J. Freshwat. Ecol. 11: 391-397. https://doi.org/10.1080/02705060.1996.9664466
  21. Lu, K., C. Jin, S. Dong, B. Gu and S. H. Bowen. 2006. Feeding and control of blue-green algal blooms by tilapia (Oreochromis niloticus). Hydrobiologia 568: 111-120.
  22. Lorenzen, C.J. 1967. Determination of chlorophyll and pheopigments: spectrophotometric equation. Limnol. Oceanogr. 12: 343-346. https://doi.org/10.4319/lo.1967.12.2.0343
  23. Matsuzaki, S-i. S., N. Usio, N. Takamura and I. Washitani. 2007. Effects of common carp on nutrient dynamics and littoral community composition: roles of excretion and bioturbation. Arch. Hydrobiol. 168: 27-38. https://doi.org/10.1127/1863-9135/2007/0168-0027
  24. Sarnelle, O. 1992. Nutrient enrichment and grazing effects on phytoplankton in lakes. Ecology 73: 551-560. https://doi.org/10.2307/1940761
  25. Shapiro, J. 1990. Biomanipulation: the next phase-making it stable. In: Biomanipulation-tool for water management (Gulati, R.D., E. Lammens, M.L. Meijer and D.E. Van eds.), Kluwer Academic Publishers, Belgium, pp. 13-27.
  26. Spencer, C.N., B.R. McClelland and J.A. Stanford. 1991. Shrimp stocking, salmon collapse, and eagle displacement. BioScience 41: 14-21. https://doi.org/10.2307/1311536
  27. Starling, F.L.R.M. 1993. Control of eutrophication by silver carp (Hypophthalmichthys molitrix) in the tropical Paranoa Reservoir (Brasilia, Brazil): a mesocosm experiment. Hydrobiologia 257: 143-152. https://doi.org/10.1007/BF00765007
  28. Yasuno, M., Y. Sugaya, K. Kaya and M. M. Watanabe. 2000. Variations in the toxicity of Microcystis species to Moina macrocopa, pp. 43-51. In: Advances in microalgal and protozoal studies in Asia. (Watanabe, M.M. and K. Kaya, eds.) Global Environmental Forum, Tsukuba, National Institute for Environmental Studies, Japan.
  29. Zhao, W., S. Dong, Z. Zhang and D. Li. 2001. Effect of silver carp stocking and fertilization on plankton community in enclosures in saline-alkaline ponds. Chin. J. Appl. Ecol. 12: 299-303.