FFT를 이용한 자력 포텐셜필드 자료의 수직방향의 연속에 대한 새로운 접근방법

New Approach in Magnetic Potential Field Continuation by FFT

  • 김형래 (공주국립대학교 지질환경과학과) ;
  • 황종선 (한국지질자원연구원) ;
  • 서만철 (공주국립대학교 지질환경과학과) ;
  • 김정우 (캐나다 캘거리 대학교 지구정보공학과)
  • Kim, Hyung-Rae (Department Of Geoenvironmental Science, Kongju University) ;
  • Hwang, Jong-Sun (Korea Institute of Geoscience and Mineral Resources) ;
  • Suh, Man-Cheol (Department Of Geoenvironmental Science, Kongju University) ;
  • Kim, Jeong-Woo (Department of Geomatics Engineering, University of Calgary)
  • 투고 : 2010.02.16
  • 심사 : 2010.06.19
  • 발행 : 2010.06.28

초록

일반적으로 일정한 고도에서 계산된 지구자기 (또는 중력) 이상값을 다른 고도에서의 이상값으로 변환하기 위해서 푸리에 변환 (Fourier transform)을 이용하여 연속(continuation)을 실행한다. 하지만 두 연속면 사의의 수직 거리가 크거나, 특히 하향(downward)연속일 경우에 이러한 방법을 이용하면 수학적으로 불안전하여 현실적인 값을 갖기 어렵거나 실제적인 이상값과는 상이한 값을 갖는 경우가 대부분이다. 이를 보완하기 위해 두 개의 서로 다른 고도에서 얻은 독립적인 이상값을 이용하여 두 고도사이에서의 값을 비교적 정확히 예측할 수 있는 상호연속 (dual continuation) 모델을 제시하고자 한다. 이를 통해 지구물리, 지질학적 해석이 가능해지고, 지상자료만을 이용한 해석에서 올 수 있는 오류를, 다른 고도에서의 독립적으로 획득한 포텐셜필드 위성자료를 함께 사용함으로써 줄일 수 있다.

In general, a crustal geomagnetic (or gravity) anomaly compiled at one altitude can be estimated at a different altitude by continuation using the Fourier transform (FT). However, in case of continuation with a great distance between the two elevations, or, in particular, in case of downward continuation, the estimated anomalies by the FT are likely to be mathematically unstable so that the estimated values are not realistic. To solve this problem, two independently measured magnetic field anomalies at different altitudes, such as aeromagnetic and satellite magnetic observations, are implemented to estimate values at in-between altitude for better understanding and interpreting geophysical and geological features. This ‘'dual continuation’' technique is straightforward in the FT and gives a more realistic estimate in all altitudes when we simulated with a set of prismatic bodies at different altitudes. This implies that we add up another constraint like satellite-based observations on the geopotential field modeling for the non-unique geological and geophysical problems to a conventional Fourier-type continuation technique with a single set of observations.

키워드

참고문헌

  1. Bhattacharyya, B. K. (1964) Magnetic anomalies due to prism-shaped bodies with arbitrary polarization, Geophysics, v.29, p.517-531. https://doi.org/10.1190/1.1439386
  2. Blakely, R. J. (1995) Potential Theory in Gravity & Magnetic Applications, Cambridge, NY, 441p.
  3. Bruan, A., Kim, H.R., Csatho, B. and von Frese, R. R. B (2007), Gravity-inferred crustal thickness of Greenland, Earth Planet. Sci. Lett., v.262, p.138-158 https://doi.org/10.1016/j.epsl.2007.07.050
  4. Hildenbrand, T. G., Blakely, R. J., Hinze, W. J., Keller, R., Langel, R. A., Nabighian, M. and Roest, W. (1996) Aeromagnetic survey over U.S. to advance geomagnetic research, Eos, v.77, p.265 & p.268
  5. Kim, H. R, von Frese, R. R. B., Golynsky, A. V., Taylor, P. T. and Kim, J. W. (2004) Application of satellite magnetic observations for estimating near-surface magnetic anomalies, Earth Planets Space, v.56, p.955-966 https://doi.org/10.1186/BF03351793
  6. Langel, R. A. and Hinze, W. J. (1998) The Magnetic Field of the Earth's Lithosphere, Cambridge, New York, 561p.
  7. Lee, J.-S (2009) Determination of the Optimal Parameters in Data Processing for the Precision Geoid Construction, J. GIS Assoc. Korea, v.17, no.3, p.397-404
  8. Maus, S., Yin, F., Luhr, H., Manoj, C., Rother, M., Rauberg, J., Michaelis, I., Stolle, C. and Muller, R.D. (2008) Resolution of direction of oceanic magnetic lineations by the sixth-generation lithospheric magnetic field model from CHAMP satellite magnetic measurements. Geochem. Geophys. Geosyst., v.9 , p.1525-2027
  9. Ravat, D. N., Pilkington, M., Purucker, M., Sabaka, T., Taylor, P.T., von Frese, R. R. B. and Whaler, K.A. (1998) Recent advances in the verification and geologic interpretation of satellite-altitude magnetic anomalies, 68th Annual Meeting, Society of Exploration Geophysicists, Expanded Abstracts, p.507-510.
  10. Roman, D. R. (1999) An integrated geophysical investigation of Greenland's tectonic history. PhD Thesis, The Ohio State University.
  11. Strang van Hees, G. (1990), Stokes formula using Fast Fourier Techniques, Manu. Geod., v.15, p.235-239
  12. Taylor, P. T., Frawley, J. J., Kim, H. R., von Frese, R. R. B. and Kim, J.W. (2003) Comparing Magsat, Orsted and CHAMP crustal magnetic anomaly data over the Kursk Magnetic Anomaly, Russia, in First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, edited by C. Reigber, H. Luhr, and P. Schwintzer, Heidelberg: Springer-Verlag, p.302-308.
  13. Verhoef, J., Roest, W. R., Macnab, R., Arkani_Hamed, J. and Members of the Project Team (1996) Magnetic anomalies of the Arctic and North Atlantic Oceans and adjacent land areas; GSC Open File 3125, Parts a and b (CD_ROM and project report); Geological Survey of Canada, Dartmouth NS.
  14. von Frese, R. R. B., Kim, H. R., Tan, L, Kim, J. W., Taylor, P. T., Purucker, M. E., Alsdorf, D. E. and Anderson, A. J. (1999) Satellite magnetic anomalies of the Antarctic crust, Annali di Geofisica, v.42, p.293-307.